Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Алгоритм машинного обучения дает советы по управлению ядерным синтезом
Коллаборация Швейцарского плазменного центра и компании DeepMind разработала новый метод магнитного управления плазмой в токамаке. Алгоритм глубокого обучения с подкреплением, разработанный DeepMind, позволяет значительно ускорить подбор настройки токамака для создания наперед заданных конфигураций плазмы с высокой точностью.
Токамак, или тороидальная камера с магнитными катушками, представляет собой установку тороидальной формы (бублика или пончика), в котором создаются условия для протекания управляемого термоядерного синтеза — тех же реакций, что проходят в недрах звезд. С этой целью в токамаках генерируются мощные магнитные поля и создается вакуум для удержания высокотемпературной плазмы и защиты стенок установки от расплавления. Теоретически высвобождаемую в этом процессе энергию можно использовать для производства электроэнергии.
Швейцарский плазменный центр (SPC) Федеральной политехнической школы Лозанны (EPFL) обладает многолетним опытом в области физики плазмы и методов управления ею. Мало того что SPC — один из немногих исследовательских центров в мире, обладающих действующим токамаком, так еще установка у них весьма непростая. Их токамак допускает различные конфигурации плазмы, задаваемых положением магнитных катушек, поэтому и называется токамаком переменной конфигурации (TCV).
Конфигурация плазмы связана с ее формой и положением в токамаке, а от этого зависит устойчивость плазмы и производительность реактора, то есть количество генерируемой энергии. Перед проведением экспериментов на своей установке исследователи из SPC сначала проверяют конфигурации систем управления на симуляторе.

«Наш симулятор основан более чем на 20-летних исследованиях и постоянно обновляется, — поясняет Федерико Феличи (Federico Felici), сотрудник SPC и соавтор исследования. — Но даже в этом случае для определения правильного значения каждой переменной в системе управления по-прежнему необходимы длительные расчеты. Вот тут-то и появляется наш совместный исследовательский проект с DeepMind».
DeepMind — британская компания, занимающаяся научными открытиями и вопросами ИИ, которую Google приобрела в 2014 году и которая стремится «решать проблемы искусственного интеллекта для развития науки и человечества». Эксперты DeepMind разработали алгоритм глубокого обучения с подкреплением (deep reinforcement learning, DRL), который может создавать и поддерживать определенные конфигурации плазмы, и обучили его на симуляторе SPC.
Вначале алгоритм тестировал множество различных стратегий управления плазмой в симуляции для накопления опыта. Причем обучение проходило в две стороны: сначала алгоритму давали ряд настроек для управления установкой, по которым на симуляторе генерировалась плазма, а алгоритм анализировал ее конфигурацию; затем по конфигурации плазмы алгоритмом определялись правильные настройки.

После обучения система на основе алгоритма DRL смогла создавать и поддерживать широкий спектр форм плазмы и расширенных конфигураций в симуляторе, в том числе такую, при которой в реакторе одновременно поддерживаются два отдельных фрагмента плазмы.
Наконец, исследовательская группа протестировала свою новую систему непосредственно на токамаке, чтобы увидеть, как она будет работать в реальных условиях. Как и предполагалось, все созданные алгоритмом DRL и предсказанные симулятором SPC конфигурации удалось получить на реальной установке. Таким образом, новый подход к управлению магнитными катушками токамака не только позволяет ускорить создание необходимых конфигураций плазмы, но и обеспечивает точное отслеживание местоположения, тока и формы для этих конфигураций.
Мартин Ридмиллер (Martin Riedmiller), руководитель группы управления в DeepMind и соавтор исследования, отметил: «Миссия нашей команды состоит в том, чтобы исследовать системы искусственного интеллекта нового поколения — контроллеры с обратной связью, — которые могут обучаться на сложных динамических средах с нуля. Управление термоядерной плазмой в реальных установках предлагает фантастические, хотя и чрезвычайно сложные возможности».
Статья с результатами исследования опубликована в журнале Nature.
Приблизительно 4,5 тысячи лет назад в Египте жил пожилой человек, который, вероятно, трудился гончаром. Сегодня его ДНК расшифровали полностью: это первый для современной науки случай расшифровки полного генома человека из Древнего Египта. Анализ не только раскрыл детали былой жизни, но и намекнул на связи с Месопотамией.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Гарум — знаменитый рыбный соус, который был неотъемлемой частью кухни Древнего Рима и других средиземноморских культур. Он стоял на столах и в хижинах бедняков, и в пиршественных залах патрициев. Философ Сенека с отвращением называл его «драгоценной сукровицей протухших рыб», но миллионы римлян обожали эту приправу. Что на самом деле входило в ее состав? Ответ на вопрос нашла международная команда ученых с помощью чанов, которые использовались для приготовления соуса.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».
Снимки с фотоловушек давно стали культурным явлением. Особенно забавными выглядят медведи. Мы с удовольствием смотрим на зверей, попавших в объектив камер в национальных парках: тигр украл фотоловушку, муравьед проехал верхом на муравьеде и так далее. Но не все животные настолько обаятельные. Ученые из США решили развить эмпатию к гремучим змеям, которых многие боятся. Для этого специалисты запустили трансляцию из «мегалогова», где рептилии отдыхают и рожают потомство.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии