Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Лучший в мире детектор темной материи вступил в строй
Завершились испытания крупнейшего и самого чувствительного в мире детектора, призванного наконец уловить загадочные частицы темной материи — вимпы. Вот только существуют ли они вообще? Вместе с Naked Science разбираемся в аргументах за и против.
Испытания крупнейшего в мире детектора темной материи LUX-ZEPLIN прошли успешно. Огромная установка работает как надо и готова к поиску неуловимых вимпов. Это гипотетические частицы, из которых, как надеются многие физики, и состоит темная материя. Тесты начались 23 декабря 2021 года и закончились 11 мая 2022 года. Их результаты уже опубликованы в виде препринта. Спойлер: темной материи пока не нашли. Впрочем, никто и не ждал открытия так скоро.
Загадочное нечто
Что такое темная материя? Астрономы могут измерить количество звезд и газа по их излучению. С другой стороны, движение звезд и целых галактик (а также гравитационное линзирование) позволяет рассчитать их тяготение. И у наблюдателей уже несколько десятилетий не сходится баланс. Если судить по притяжению, галактики и их скопления получаются слишком массивными. Эти и другие свидетельства приводят к интересной дилемме. Первый выход — допустить, что во Вселенной есть вещество, не наблюдаемое ни в какие телескопы (темная материя). Второй — переписать законы гравитации так, чтобы видимой материи хватало для должного тяготения.
Большинство специалистов выбирает первый путь. Тому есть несколько причин. Прежде всего переписать законы физики не так просто. Новые законы гравитации, объясняя одни наблюдения, зачастую противоречат другим. И потом, допустим, что гравитация создается только наблюдаемым веществом. Тогда должна быть однозначная связь между тяготением галактики и массой видимого вещества в ней. Подчиняющаяся какой угодно формуле, но однозначная. На практике же корреляция между ними, мягко говоря, слабовата.
Частичная разгадка?
Итак, большинство астрономов исходит из существования темной материи. Из чего же она состоит?
Может быть, это обычные для космоса объекты, слишком тусклые для наших телескопов? Черные дыры, коричневые карлики, еще что-нибудь в этом роде… Несомненно, свой вклад в невидимое вещество Вселенной вносят и они. Вот только темной материи впятеро больше, чем обычной. Мы кое-что знаем об эпохах, когда формировались первые атомные ядра и атомы. И исходя из этих знаний, сегодня в кубическом парсеке просто не может быть столько атомных ядер, сколько требуется для темной материи.
Правда, эти расчеты нельзя назвать совершенно надежными. Там есть шероховатости, за которые при желании можно зацепиться. Так что астрономы не сбрасывают со счетов версию, что это не темная материя принципиально невидимая, а телескопы у нас пока слабоваты.
Но что если жрецы космологии правы, и темная материя состоит не из атомов или их ядер? Тогда придется признать, что она состоит из каких-то других частиц. Среди множества теорий есть и такие, в которых частицы темной материи слипаются в экзотические небесные тела, своего рода «темные звезды». Но куда проще предположить, что эти частицы прямо сейчас рядом с нами, вокруг и внутри нас.
Представьте, что пространство буквально кишит невидимыми частицами. Они нескончаемым огромным потоком проходят сквозь наши тела. Почему мы этого не замечаем? Потому что эти частицы почти никогда не сталкиваются ни с ядрами атомов, ни с электронами. И только очень чувствительные детекторы, специально для этого предназначенные, могут их зафиксировать. Фантастическая картина? Только если вы никогда не слышали о нейтрино. Для них верно все вышеперечисленное.
Правда, нейтрино не годятся на роль темной материи. По крайней мере те их виды, что уловлены экспериментаторами и включены в ее величество Стандартную модель. Их суммарная масса слишком мала, чтобы порождать столь могучую гравитацию. Но они преподают нам хороший урок: пустое, казалось бы, пространство наполнено легионами трудноуловимых частиц. Что, если там есть еще какие-то частицы, и они-то и составляют темную материю?
У физиков сколько угодно кандидатов на эту роль. В своих попытках выйти за пределы Стандартной модели теоретики накопили целый зоопарк частиц, которые могут существовать, но это не точно.
Чаще других в таких выкладках возникают вимпы. Это слово образовано от аббревиатуры WIMPs, или Weakly Interacting Massive Particle, то есть «слабовзаимодействующие массивные частицы». «Массивные» в данном случае означает, что они значительно тяжелее протона или нейтрона (в отличие от чрезвычайно легких нейтрино). Насколько тяжелее, точного ответа нет, теория допускает самые разные варианты. Детектор LUX-ZEPLIN рассчитан на поиск вимпов с массами 10-30 масс протона.
Хорошо, а что означает «слабовзаимодействующие»? Напомним, что между частицами действуют только четыре силы: сильная, слабая, электромагнитная и гравитационная. Разные частицы участвуют в разных взаимодействиях. Например, кварки — во всех четырех, а электроны — во всех, кроме сильного. Вимпы, как и нейтрино, участвуют только в двух взаимодействиях — слабом и гравитационном.
Можно ли обнаружить вимпы по их гравитации? Да, когда речь идет о суммарном тяготении всех вимпов в целой галактике (именно так, напомним, астрономы и обнаружили темную материю). А что насчет вимпов в пределах вашей комнаты? Почти наверняка их суммарная гравитация необнаружима. Строго говоря, есть проекты детекторов, которые могли бы помочь. Но их авторы исходят из очень смелого предположения, что каждый отдельный вимп имеет чудовищную по меркам частиц массу. Он должен быть массивнее протона как минимум в 1018 раз, а то и вовсе достигать планковской массы (соизмеримой с массой пылинки!). Большинство теоретиков не готовы предполагать, что столь тяжелые частицы вообще бывают.
Тогда остается слабое взаимодействие. Правда, чтобы вимп вступил в такое взаимодействие с атомом, он должен буквально лоб в лоб врезаться в атомное ядро. Это крайне маловероятное событие. Но именно такие редчайшие случаи и призван вылавливать LUX-ZEPLIN.
Ложка надежды в бочке ксенона
Сердце нового детектора — титановая бочка с семью тоннами жидкого ксенона. Это и есть мишень для вимпов. Предполагается, что когда вимп врезается в атом ксенона, происходит два события. Во-первых, ядро атома испускает ультрафиолетовый фотон (это так называемая первичная вспышка). Во-вторых, из атома выбивается электрон.
За ультрафиолетовыми фотонами охотятся фотоумножители, просматривающие толщу ксенона. Электроны тоже не пропадают впустую. Электрическое поле толкает их вверх, к поверхности. Попадая в тонкий (менее сантиметра) слой паров ксенона, электрон вызывает микроскопическую вспышку света. Эти вспышки называются вторичными. Первичные и вторичные вспышки и должны сигнализировать, что в гости пожаловал вимп.
Проблема в том, что в детектор без приглашения вламываются другие частицы и тоже вызывают вспышки. Во-первых, в него попадают космические лучи. Во-вторых, в каждом природном материале есть примесь радиоактивных изотопов, испускающих радиацию. Этот фон очень мал для дозиметриста, но чрезвычайно велик для охотника за вимпами.
Вимпы можно отличить от других частиц по тому, как яркость первичной вспышки соотносится с яркостью вторичной. Для этого и нужны два вида вспышек. Но этого мало. Посторонние частицы врезаются в атомы куда чаще вимпов, так что полезный сигнал рискует утонуть в шуме.
Поэтому LUX-ZEPLIN похож на матрешку или луковицу, где мишень для вимпов — в самом центре. Все вышележащие слои призваны защитить ее от посторонних частиц или хотя бы предупредить об их появлении. Разберем эту конструкцию от центра к периферии.
Стенки титановой цистерны — двойные, и в промежуток между ними залито еще две тонны жидкого ксенона. Вообще-то это сделано ради электрической изоляции мишени от остальных частей установки. Но этот дополнительный слой тоже работает как детектор частиц. Если что-то попадет сначала в него, а сразу после в мишень, можно быть уверенным: это не вимп. Гордый вимп никогда не снизойдет до двух атомов подряд, это совершенно невероятно.
Следующий слой «матрешки» — внешний детектор. Он тоже выявляет посторонние частицы. Незваные гости вызывают вспышки в гадолиниевом сцинтилляторе, которого там ни много ни мало 17 тонн.
Вся эта система погружена в резервуар с 238 тоннами сверхчистой воды. Эта вода служит хорошим щитом от естественной радиации. А те частицы, которые сквозь нее все-таки пролетают, испускают черенковское излучение, предупреждая о своем визите.
Наконец, вся «матрешка» упрятана под землю на глубину более 1,5 километра. Толща породы прикрывает ее от космических лучей.
Рискованные вложения
LUX-ZEPLIN — не первый ксеноновый детектор вимпов. Сам принцип их действия был предложен двадцать лет назад. Его опробовали на детекторе ZEPLIN, содержавшем символические 12 килограммов ксенона. В 2012 году, когда он закончил работу, стало ясно, что вимпы не собираются клевать на столь скромную подачку. Детектор LUX работал в 2014-2016 годах и содержал уже 370 килограммов ксенона, но тоже не обнаружил никаких вимпов. Следующим стал XENON1T (3,5 тонны ксенона и 2016-2018 годы). Теперь эстафету принял LUX-ZEPLIN, наследник двух первых детекторов. Он во многом похож на них по конструкции и даже располагается на месте LUX.
Похоже, физики собираются сооружать все более крупные и дорогие детекторы, пока не закончится ксенон (а если серьезно, пока их не откажутся финансировать). Ну или пока не обнаружат вимпы. Скептики могли бы сказать, что первое куда более вероятно, чем второе. И учитывая, что вимпы — лишь одна из множества гипотез о природе темной материи, основания для скепсиса есть.
Конечно, не вимпами едиными живы поиски темной материи. Например, детекторы ADMX и ABRACADABRA пытаются уловить аксионы. Это частицы куда более легкие, чем вимпы, хотя и не менее гипотетические.
Вообще, придумать гипотезу о природе темной материи куда дешевле, чем построить детектор. Так что экспериментаторы вынуждены проверять лишь самые популярные версии. Вполне возможно, что верной в итоге окажется какая-нибудь непопулярная. Но кто не рискует, тот не пьет шампанского (и валидола тоже).
Научный консультант Международной лаборатории биоинформатики НИУ ВШЭ Алан Герберт предложил новое объяснение одной из нерешенных загадок биологии — происхождения генетического кода. Согласно исследованию, современный генетический код мог возникнуть благодаря самоорганизующимся молекулярным комплексам — тинкерам. Новую гипотезу автор выдвинул на основе анализа вторичных структур ДНК с помощью нейросети AlphaFold3.
Остывшая после Большого взрыва Вселенная была наполнена холодным, нейтральным газом, заслонявшим свет звезд. К счастью, за космологическими Темными веками пришла эпоха реионизации. Первые звезды и галактики ионизировали межгалактическое пространство, и Вселенная вновь засияла. И вот ученые нашли древнейшую галактику, излучение которой реионизирует окружающий нейтральный газ.
Во многих западных странах рождаемость снижается или стагнирует, но при этом статистика свидетельствует о росте числа собак-компаньонов. В результате в некоторых государствах, к примеру, в США, домашних псов уже больше, чем детей. О возможных причинах, стоящих за тенденцией, в новом исследовании размышляет Энико Кубиньи (Enikő Kubinyi), профессор и заведующая кафедрой этологии в Университета Этвёша Лоранда (Венгрия).
Крупные современные города России — продукт своеобразной эволюции. Их морфология может сочетать историческую застройку, советское наследие и здания времен рыночной экономики. Авторы новой статьи — ученые из ВШЭ и Института географии РАН — заинтересовались, насколько российские города соответствуют современной концепции 15-минутного города. Она описывает доступность инфраструктуры для жителей: могут ли те самостоятельно добраться (пешком или на велосипеде) до школ, больниц, театров и других необходимых заведений за четверть часа.
К современному транспорту и строениям предъявляются жесткие требования по остеклению. Оно должно обеспечивать безопасность, хорошую тепло- и шумоизоляцию, противостоять сложным погодным условиям. Белорусские инженеры предложили революционное решение — вакуумные модули остекления (ВМО), которые практически исключают теплопередачу за счет вакуумной прослойки между стеклами. Эта разработка особенно актуальна в контексте глобального тренда на энергоэффективность и экологичность транспортных средств.
Прежде чем на Земле появились привычные нам животные, ее населяли «черновики Бога». Это таинственные существа, жившие в эдиакарском периоде и совсем не похожие на своих преемников. В новом исследовании ученые описали 211 окаменелостей мелкой двусторонне-симметричной Parvancorina minchami, найденных у берегов Белого моря. Авторы сумели реконструировать рост и развитие парванкорины, а также оценили продолжительность ее жизни.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии