Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Алгоритм машинного обучения дает советы по управлению ядерным синтезом
Коллаборация Швейцарского плазменного центра и компании DeepMind разработала новый метод магнитного управления плазмой в токамаке. Алгоритм глубокого обучения с подкреплением, разработанный DeepMind, позволяет значительно ускорить подбор настройки токамака для создания наперед заданных конфигураций плазмы с высокой точностью.
Токамак, или тороидальная камера с магнитными катушками, представляет собой установку тороидальной формы (бублика или пончика), в котором создаются условия для протекания управляемого термоядерного синтеза — тех же реакций, что проходят в недрах звезд. С этой целью в токамаках генерируются мощные магнитные поля и создается вакуум для удержания высокотемпературной плазмы и защиты стенок установки от расплавления. Теоретически высвобождаемую в этом процессе энергию можно использовать для производства электроэнергии.
Швейцарский плазменный центр (SPC) Федеральной политехнической школы Лозанны (EPFL) обладает многолетним опытом в области физики плазмы и методов управления ею. Мало того что SPC — один из немногих исследовательских центров в мире, обладающих действующим токамаком, так еще установка у них весьма непростая. Их токамак допускает различные конфигурации плазмы, задаваемых положением магнитных катушек, поэтому и называется токамаком переменной конфигурации (TCV).
Конфигурация плазмы связана с ее формой и положением в токамаке, а от этого зависит устойчивость плазмы и производительность реактора, то есть количество генерируемой энергии. Перед проведением экспериментов на своей установке исследователи из SPC сначала проверяют конфигурации систем управления на симуляторе.

«Наш симулятор основан более чем на 20-летних исследованиях и постоянно обновляется, — поясняет Федерико Феличи (Federico Felici), сотрудник SPC и соавтор исследования. — Но даже в этом случае для определения правильного значения каждой переменной в системе управления по-прежнему необходимы длительные расчеты. Вот тут-то и появляется наш совместный исследовательский проект с DeepMind».
DeepMind — британская компания, занимающаяся научными открытиями и вопросами ИИ, которую Google приобрела в 2014 году и которая стремится «решать проблемы искусственного интеллекта для развития науки и человечества». Эксперты DeepMind разработали алгоритм глубокого обучения с подкреплением (deep reinforcement learning, DRL), который может создавать и поддерживать определенные конфигурации плазмы, и обучили его на симуляторе SPC.
Вначале алгоритм тестировал множество различных стратегий управления плазмой в симуляции для накопления опыта. Причем обучение проходило в две стороны: сначала алгоритму давали ряд настроек для управления установкой, по которым на симуляторе генерировалась плазма, а алгоритм анализировал ее конфигурацию; затем по конфигурации плазмы алгоритмом определялись правильные настройки.

После обучения система на основе алгоритма DRL смогла создавать и поддерживать широкий спектр форм плазмы и расширенных конфигураций в симуляторе, в том числе такую, при которой в реакторе одновременно поддерживаются два отдельных фрагмента плазмы.
Наконец, исследовательская группа протестировала свою новую систему непосредственно на токамаке, чтобы увидеть, как она будет работать в реальных условиях. Как и предполагалось, все созданные алгоритмом DRL и предсказанные симулятором SPC конфигурации удалось получить на реальной установке. Таким образом, новый подход к управлению магнитными катушками токамака не только позволяет ускорить создание необходимых конфигураций плазмы, но и обеспечивает точное отслеживание местоположения, тока и формы для этих конфигураций.
Мартин Ридмиллер (Martin Riedmiller), руководитель группы управления в DeepMind и соавтор исследования, отметил: «Миссия нашей команды состоит в том, чтобы исследовать системы искусственного интеллекта нового поколения — контроллеры с обратной связью, — которые могут обучаться на сложных динамических средах с нуля. Управление термоядерной плазмой в реальных установках предлагает фантастические, хотя и чрезвычайно сложные возможности».
Статья с результатами исследования опубликована в журнале Nature.
Загрязнение океана нефтью и пластиком — глобальная экологическая проблема, о которой давно говорят ученые. Оказалось, что эти два типа загрязнителей способны объединяться в гибридные образования, которые могут преодолевать тысячи километров по морским просторам.
Польша может экстрадировать на Украину российского археолога, заведующего сектором археологии Северного Причерноморья в отделе Античного мира Эрмитажа Александра Бутягина. Соответствующее ходатайство направила прокуратура в Окружной суд Варшавы.
Три из четырех крупнейших спутников Юпитера известны «согласованностью» своего обращения вокруг Юпитера: пока Ганимед совершает полный оборот, Европа описывает два круга, а Ио — четыре. Только Каллисто нарушает гармонию и движется «по-своему», и недавно этому предложили новое объяснение: возможно, так сложилось из-за неоднородности того газопылевого облака, в котором эти луны формировались.
В конце 2025 года СМИ рассказали нам, что «новая» российская орбитальная станция (РОС) будет состоять из модулей, летающих в космосе до 30 лет. «И так сойдет!»: новую российскую орбитальную станцию соберут из остатков МКС», «Отцепим старье от МКС и будем бесконечно чинить» — это не издание «Панорама», а абсолютно реальные заголовки российских СМИ. Печально, но сходную позицию занял и лучший космический журналист и расследователь современного мира Эрик Бергер. Он зашел настолько далеко, чтобы пожалеть, что Дмитрий Рогозин уже не возглавляет «Роскосмос». А вот у тех, кто знает тему, решения по РОС, заявленные официальными лицами в конце прошлого года, вызвали положительную реакцию. Почему?
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Загрязнение океана нефтью и пластиком — глобальная экологическая проблема, о которой давно говорят ученые. Оказалось, что эти два типа загрязнителей способны объединяться в гибридные образования, которые могут преодолевать тысячи километров по морским просторам.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
У побережья Канады морские биологи стали свидетелями необычного случая. Косатки и дельфины объединили свои силы, чтобы вместе охотиться на тихоокеанского лосося. Они погружались в темные глубины, а после удачной охоты делились пищей. Это первое задокументированное охотничье сотрудничество между двумя видами морских млекопитающих.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии