Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Химики вычислили источник земной воды
Океаны на нашей планете не могли возникнуть сразу после ее появления: здесь было слишком жарко. Однако попытки объяснить их «кометным завозом» не удались, изотопный состав нашей воды не такой, как в кометах. До самых недавних пор оставалось неясным, откуда же тогда она появилась, сделав возможной земную жизнь?
Земля, как и другие планеты, формировалась при соударении и «слипании» небольших протопланетных тел, планетезималей. Однако их столкновения сопровождались выделением огромных количеств энергии — десятикилометровое тело при падении может дать взрыв на 100 млн мегатонн тротилового эквивалента. Поэтому сразу после образования планеты на ее поверхности было довольно жарко. Вдобавок земная орбита близка к Солнцу, что само по себе затрудняет накопления водного льда на ее поверхности.
Все это заставило многих ученых предположить, что воду на Землю занесли кометы или льдистые астероиды, сформировавшиеся куда дальше от Солнца, и поэтому накопившие немало водного льда. Однако соотношение дейтерия (тяжелый водород) и обычного, легкого водорода на Земле кратно отличается от такого же соотношения в материале астероидов и комет. Некоторые из последних (комета 103Р / Хартли) имеют относительно близкое к земному соотношение дейтерия и легкого водорода, но изотопы других элементов, например азота, у них все равно резко отличаются, то есть много подобных тел на Землю упасть не могло, и объяснить так земные океаны нельзя.
Ранее ряд исследователей пытались предложить другое объяснение: вода содержалась в неких гидратированных минералах внутри земной мантии. Со временем эти минералы могли разлагаться, выделяя воду, что действительно типично для некоторых соединений магния и кремния. Однако, как отмечают авторы новой работы в Physical Review Letters, предлагавшиеся соединения часто не могли удерживать воду при тех температурах и давлении, которые должны быть в земной мантии.
Откуда же взялась вода? Ученые предлагают взглянуть на вопрос шире и напоминают, что в первые десятки миллионов лет после образования Земли ее внутренняя структура была совсем не такой, как сейчас. В наши дни треть планеты — это железо-никелевое ядро, состоящее из компонентов много тяжелее силикатов, образующих мантию. Но вначале планета внутри была более однородной: более тяжелые металлические компоненты во многом еще не «утонули» в ядре планеты, а более легкие силикатные еще не «всплыли» в мантию и кору. Это значит, что силикаты того времени подвергались воздействию тех температур и давлений, которые сейчас есть в ядре, но которым они не подвергаются сегодня, «всплыв» в мантию.
В новой работе ученые во главе с Сяо Дуном (КНР) использовали семейство эволюционных алгоритмов USPEX, разработанных Артемом Огановым (второй автор работы), для расчета свойств различных соединений, чтобы выяснить, какие из них могли содержать воду в недрах тогдашней Земли. Оказалось, что подходящих кандидатов всего два, и оба они — модификации одного силиката: α−Mg2SiO5H2 и β−Mg2SiO5H2. Первый сохраняют стабильность при 262–338 гигапаскалях (примерно 2,6-3,4 миллиона земных атмосфер). Второй — при давлениях выше 338 гигапаскалей. Оба соединения — суперионные проводники, то есть ионы (в частности, протоны, ядра атомов водорода) внутри их кристаллической решетки мигрируют довольно легко. Что важно, в отличие от более ранних кандидатов в «водоносные» минералы в глубинах Земли, оба эти соединения могут сохранять стабильность при температурах в тысячи кельвин, то есть удерживали воду даже находясь в центре нашей планеты.
В комментарии для Naked Science Артем Оганов отмечает, что в первые десятки миллионов лет земной истории, когда расплавленное железо опускалось в центр планеты, вытесняя более легкие силикаты в область меньших глубин, предсказанное соединение постепенно начало разлагаться. Давление в мантии, куда они переместились, было слишком низким, чтобы оно могло существовать. Среди продуктов распада 11% по весу составила вода.
Оказавшись в мантии, она, в силу малой плотности, постепенно поднималась вверх, и с извержениями вулканов попадала в атмосферу Земли. Так постепенно поверхность нашей планеты оказалась насыщена водяным паром, который затем конденсировался, образуя водоемы.
Вопрос о происхождении земной воды чрезвычайно важен по двум причинам. Во-первых, без нее не могла бы возникнуть местная жизнь и мы сами. Во-вторых, поняв, как она возникла на Земле, можно более или менее ясно представить, какие из открываемых астрономами экзопланет в «зоне обитаемости» могут быть насыщены водой, а значит и потенциальной жизнью, а какие лишены ее.
По словам Артема Оганова, открытый «на кончике пера» механизм появления земной воды не работает для Луны или Марса. Даже в центре последнего давление не может превышать 37 гигапаскалей, что в несколько раз ниже, чем нужно для стабильности предсказанных силикатов. Очевидно, вода на Марсе сформировалась другим путем, например прибыла с кометами.
Ученый констатирует, что новое открытие имеет значение и для планет вне Солнечной системы. Суперземли, по размерам и массе заметно крупнее нашей Земли, имеют и более высокое давление в мантии. Это значит, что там открытые авторами новой работы минералы не потеряют стабильность даже после того, как железо и иные тяжелые элементы вытеснят их из ядра. Такая ситуация может в какой-то степени ограничивать количество воды на поверхности подобных планет.
В случае суперземель избыточное количество воды тоже может быть не лучшим вариантом для потенциальной жизни. Если всю поверхностную воду Земли распределить по ее поверхности равномерно, слой будет всего около трех километров. Но суперземли благодаря чуть большей силе тяжести лучше удерживают легкие соединения, и в теории способны накопить океаны глубиной 100 километров и более.
Слишком глубокий океан создаст огромное давление, при котором вода становится льдом даже если она серьезно нагрета. Такой экзотический лед, как его называют ученые, блокирует поступление минералов из мантии, что обедняет глобальный океан веществами, необходимыми для развития жизни. Если какая-то часть воды на таких суперземлях будет удержана в мантии, это может уменьшить глубину глобального океана и улучшить перспективы для местной жизни.
На новых изображениях сверхмассивной черной дыры в нашей Галактике ее ближайшие окрестности выглядят не так, как на опубликованном в 2022 году известном снимке.
То, насколько классический компьютер сможет воссоздать определенное квантовое состояние, описывается свойством под названием «магия». Ученые из США выяснили, существует ли резкий переход между состоянием «можем обойтись обычным компьютером» и «подойдет только квантовый».
Когда в Штатах отодвинули фон Брауна — американская космонавтика испытала сильнейший упадок в считаные годы. Сходный быстрый упадок испытал советский космос после смерти Королева. Сегодня глава NASA хочет нанести удар по Маску. Можно ли спрогнозировать, насколько быстро американский космос в этом случае потеряет свои нынешние, безусловно доминирующие над Россией и Китаем позиции?
Финансовое благополучие человека зависит от разных факторов. Новое крупное исследование на примере норвежских жителей показало, как изменения в структуре семьи и смена поколений сказываются на благосостоянии людей.
Инженерная компания из Дубая LEAP71 сообщила, что спроектированный нейронной сетью Noyron и напечатанный в 3D-формате из меди ракетный двигатель успешно прошел первые испытания на полигоне в Великобритании. Возможно ли это — рассказал эксперт МАИ, старший преподаватель кафедры «Космические системы и ракетостроение» Иван Рудой.
В саге о норвежском конунге Сверрире есть эпизод о набеге на замок Сверресборг в Тронхейме в 1197 году. Нападавшие разграбили и сожгли все строения внутри, и видимо, чтобы отравить воду, сбросили в колодец мертвое тело, завалив его валунами. Останки несчастного обнаружили в 1938 году во время археологических раскопок. Сейчас генетики извлекли его ДНК и выяснили происхождение, косвенно подтвердив события, описанные более восьми столетий назад.
Полторы тысячи лет назад климат в Северном полушарии резко изменился. В Дании так похолодало, что там стало невозможно заниматься сельским хозяйством. Авторы нового исследования считают, что именно этот период был прообразом Фимбульвинтера — зимы, предшествующей Рагнарёку.
Сейчас Япония привлекает людей со всего мира, но так было не всегда. На протяжение десяти тысяч лет архипелаг оставался изолированным от остального мира, пока туда не начали прибывать первые «мигранты» с континента. Это показал генетический анализ останков человека эпохи Яёй.
Инженерная компания из Дубая LEAP71 сообщила, что спроектированный нейронной сетью Noyron и напечатанный в 3D-формате из меди ракетный двигатель успешно прошел первые испытания на полигоне в Великобритании. Возможно ли это — рассказал эксперт МАИ, старший преподаватель кафедры «Космические системы и ракетостроение» Иван Рудой.
В атмосфере Марса его нет потому, что азот там связан в марсианском грунте, как и на Земле в период доминирования анаэробных организмов на ее поверхности (то есть в докислородную эру)Откуда тогда взялся атмосферный азот на Венере (в 4 раза больше, чем на Земле)? По какому биохимическому циклу анаэробные бактерии освобождали свободный азот в атмосферу в архее на Земле и что высвободило его в таком огромном количестве на Венере? На чем основывается предположение, что для аэробных организмов Земли наличие свободного азота в атмосфере является необходимым фактором?
"Откуда тогда взялся атмосферный азот на Венере (в 4 раза больше, чем на Земле)" Оттуда же, откуда и на Земле. Из звездного нуклеосинтеза.Ответ на первый взгляд язвительный, но неверный, так как я не про вообще азот на Земле и Венере вопрошал, а про атмосферный азот, что есть большая разница с азбучной истиной про первоисточник всех (кроме водорода) химических элементов планет. К тому же, вы, зацепившись за упоминание Венеры, перевели стрелки на нее, тогда как меня интересует ничтожное количество свободного азота на Марсе.
Что связывали азот анаэробные бактерии. Которые были у нас в больших количествах -- а вот на Венере вряд ли.Но этот путь исхода азота из воздухе применительно к Марсу опровергнут анализом проб грунта, сделанным еще в 2015 году; " Как подчеркивают ученые, найденные ими соединения азота не являются следами присутствия жизни на Марсе — доли изотопов азота в породах изученных Curiosity камней и отсутствие какой-либо органики и значительных запасов аммиака на красной планете говорит о том, что синильная кислота и оксид азота в "Джоне Кляйне" и в "Камберленде" происходят из неорганической среды". Тогда же было сделано весьма шаткое предположения, что азотные соединения в почве -- результат воздействия молний на азот в атмосфере Марса. Так что вопрос о причине крайне малой доли азота в атмосфере Марса остается открытым, так как там имеются следы весьма мощного вулканизма -- главного источника поступления азота из коры (например, Земли и Венеры). Меж тем, именно дефицит азота в атмосфере и привел Марс к такому "бедственному" нынешнему положению, так как без них парниковому углекислому газу нечего было согревать, а потому он вслед за водой вымерз и "выпал в осадок" на полюсах и затененных местах в средних между ними широтах в затененных углублениях. Кстати, судя по всему, этот процесс идет и по сей день, судя по обломившейся половинке солнечных батарей "Феникса" в 2008 году...
"Так что вопрос о причине крайне малой доли азота в атмосфере Марса остается открытым, " Для вас -- да. Для меня -- нет.Сначала отвечу на ваш вопрос: точка кипения аммиака -33,34 градуса по Цельсию. И что это доказывает или опровергает? Впрочем, после стольких споров с вами я и не сомневался, что вы в опровержение изобретете "аргументы" типа УФ, а уж в том, что не мои утверждения, но процитированные мною, будут вами отвергнуты без рассмотрения первоисточников, как необоснованные, не сомневался в особенности. Отсутствие аммиака в атмосфере Марса подтверждается его отсутствием в почве, где его не может разложить УФ, а он обязательно должен был бы попасть в почву, так как он возникает и при анаэробных процессах окисления, обеспечивавших энергией первородные бескислородные живые организмы. А потому ваш ответ, что атмосферный азот на Марсе, как и на Земле, был удален анаэробными организмами, остается голословным и чисто умозрительным. Хотя, если бы ваше предположение оправдалось, то я был бы в восторге! Так как это означало бы, что найден "убийца" жизни на Марсе, поскольку именно отсутствие в тамошнем воздухе азота в большой пропорции, сопоставимой с земной атмосферой, как раз и привело к его "осушению", а потом и к вымерзанию его атмосферы до нынешнего состояния. Тогда получилось бы, что жизнь на Марсе самоубилась... Увы, отсутствие заметного количества кислорода в атмосфере Марса также говорит о том, что там не было тех, кто производил бы его себе на погибель... Однако, слабую надежду оставляет предположение, что кислород просто весь ушел на "ржавчину" при отсутствии следующей стадии развития жизни, которая постоянно возобновляла бы из воды его запасы в атмосфере... В общем, как говорит Алиса Постик: "В жизни не так уж все просто..."
В атмосфере Марса его нет потому, что азот там связан в марсианском грунте, как и на Земле в период доминирования анаэробных организмов на ее поверхности (то есть в докислородную эру)Откуда тогда взялся атмосферный азот на Венере (в 4 раза больше, чем на Земле)? По какому биохимическому циклу анаэробные бактерии освобождали свободный азот в атмосферу в архее на Земле и что высвободило его в таком огромном количестве на Венере? На чем основывается предположение, что для аэробных организмов Земли наличие свободного азота в атмосфере является необходимым фактором?
"Откуда тогда взялся атмосферный азот на Венере (в 4 раза больше, чем на Земле)" Оттуда же, откуда и на Земле. Из звездного нуклеосинтеза.Ответ на первый взгляд язвительный, но неверный, так как я не про вообще азот на Земле и Венере вопрошал, а про атмосферный азот, что есть большая разница с азбучной истиной про первоисточник всех (кроме водорода) химических элементов планет. К тому же, вы, зацепившись за упоминание Венеры, перевели стрелки на нее, тогда как меня интересует ничтожное количество свободного азота на Марсе.
Что связывали азот анаэробные бактерии. Которые были у нас в больших количествах -- а вот на Венере вряд ли.Но этот путь исхода азота из воздухе применительно к Марсу опровергнут анализом проб грунта, сделанным еще в 2015 году; " Как подчеркивают ученые, найденные ими соединения азота не являются следами присутствия жизни на Марсе — доли изотопов азота в породах изученных Curiosity камней и отсутствие какой-либо органики и значительных запасов аммиака на красной планете говорит о том, что синильная кислота и оксид азота в "Джоне Кляйне" и в "Камберленде" происходят из неорганической среды". Тогда же было сделано весьма шаткое предположения, что азотные соединения в почве -- результат воздействия молний на азот в атмосфере Марса. Так что вопрос о причине крайне малой доли азота в атмосфере Марса остается открытым, так как там имеются следы весьма мощного вулканизма -- главного источника поступления азота из коры (например, Земли и Венеры). Меж тем, именно дефицит азота в атмосфере и привел Марс к такому "бедственному" нынешнему положению, так как без них парниковому углекислому газу нечего было согревать, а потому он вслед за водой вымерз и "выпал в осадок" на полюсах и затененных местах в средних между ними широтах в затененных углублениях. Кстати, судя по всему, этот процесс идет и по сей день, судя по обломившейся половинке солнечных батарей "Феникса" в 2008 году...
"Так что вопрос о причине крайне малой доли азота в атмосфере Марса остается открытым, " Для вас -- да. Для меня -- нет.Сначала отвечу на ваш вопрос: точка кипения аммиака -33,34 градуса по Цельсию. И что это доказывает или опровергает? Впрочем, после стольких споров с вами я и не сомневался, что вы в опровержение изобретете "аргументы" типа УФ, а уж в том, что не мои утверждения, но процитированные мною, будут вами отвергнуты без рассмотрения первоисточников, как необоснованные, не сомневался в особенности. Отсутствие аммиака в атмосфере Марса подтверждается его отсутствием в почве, где его не может разложить УФ, а он обязательно должен был бы попасть в почву, так как он возникает и при анаэробных процессах окисления, обеспечивавших энергией первородные бескислородные живые организмы. А потому ваш ответ, что атмосферный азот на Марсе, как и на Земле, был удален анаэробными организмами, остается голословным и чисто умозрительным. Хотя, если бы ваше предположение оправдалось, то я был бы в восторге! Так как это означало бы, что найден "убийца" жизни на Марсе, поскольку именно отсутствие в тамошнем воздухе азота в большой пропорции, сопоставимой с земной атмосферой, как раз и привело к его "осушению", а потом и к вымерзанию его атмосферы до нынешнего состояния. Тогда получилось бы, что жизнь на Марсе самоубилась... Увы, отсутствие заметного количества кислорода в атмосфере Марса также говорит о том, что там не было тех, кто производил бы его себе на погибель... Однако, слабую надежду оставляет предположение, что кислород просто весь ушел на "ржавчину" при отсутствии следующей стадии развития жизни, которая постоянно возобновляла бы из воды его запасы в атмосфере... В общем, как говорит Алиса Постик: "В жизни не так уж все просто..."
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии