Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
#искусственный интеллект
Современные технологии меняют не только нашу повседневную жизнь, но и такие консервативные сферы, как судебная система. Сотрудники кафедры конституционного и административного права НИУ ВШЭ в Нижнем Новгороде Ирина Михеева и Олег Шерстобоев проанализировали возможности и вызовы, связанные с внедрением ИИ в судебный процесс.
Ключевая способность искусственного интеллекта — способность к обучению. Как искусственный интеллект учится, может ли он самообучаться и сможет ли когда-нибудь заменить человека? На эти вопросы ответил научный сотрудник института «Компьютерные науки и прикладная математика» МАИ, директор департамента цифровой трансформации компании BetBoom Юрий Чайников.
Ученые МТУСИ проанализировали возможности интеграции предложенной ими модели в систему защиты веб-приложений. Внедрение автоматизированных инструментов для обнаружения потенциально фишинговых URL-адресов на ранних стадиях их проникновения в сеть поможет существенно снизить риски для пользователей и организаций.
Несколько дней назад генеральный директор ТАСС Андрей Кондрашов заявил о безуспешных испытаниях искусственного интеллекта в качестве журналиста, способного писать и редактировать тексты различной степени сложности. По его словам, нейросети пока не готовы заменить человека этой профессии. Впрочем, не все так однозначно. Стоит ли человеку опасаться конкуренции с ИИ на рынке труда в ближайшем будущем и сможет ли пишущая нейросеть изменить мир к лучшему или, напротив, добавит проблем? Своим мнением о перспективах развития искусственного интеллекта поделилась преподаватель кафедры «Реклама и связи с общественностью в высокотехнологичных отраслях» МАИ Анастасия Маркина.
Исследователи Центра ИИ НИУ ВШЭ, AIRI и Бременского университета разработали новый метод редактирования изображений на основе глубинного обучения — StyleFeatureEditor. Он позволяет точно воссоздавать мельчайшие детали изображения и сохранять их при редактировании. С его помощью пользователи смогут изменять цвет волос или выражение лица без потери качества изображения.
Зачем искусственному интеллекту миллионы синтетических «камней», как создать виртуального врача и при чем здесь «метод Монте-Карло»? Об этом и многом другом рассказал научный сотрудник института «Компьютерные науки и прикладная математика» МАИ, директор департамента цифровой трансформации в компании BetBoom Юрий Чайников.
Бурное развитие искусственного интеллекта предоставляет все новые возможности как для решения профессиональных задач, так и для творчества и самовыражения. Но это накладывает на человечество и обязанность обучаться новым технологиям, что в действительности не так просто, как кажется. О том, как эффективно пользоваться ИИ и с каких инструментов следует начинать, рассказал известный популяризатор и один из ведущих экспертов по искусственному интеллекту, кандидат физико-математических наук, доцент МАИ и НИУ ВШЭ Дмитрий Сошников.
Искусственный интеллект никогда не сравнится с естественной глупостью. Люди, обладающие такими технологиями, уничтожат себя с куда большей вероятностью, чем эти самые технологии. Когда появится ИИ уровня человека, какие профессии он заменит, нужно ли его бояться и кто лучше справится с задачей нарисовать лошадь, скачущую на астронавте, — языковая модель или любой из нас? Об этом Naked Science поговорил с Сергеем Марковым — управляющим директором и начальником управления экспериментальных систем машинного обучения департамента общих сервисов «Салют» «Сбера», одним из ведущих российских экспертов в области нейросетей, разработчиков сервисов Kandinsky и GigaChat и автором двухтомника «Охота на электроовец. Большая книга искусственного интеллекта».
В прошлом ИИ-системы выполняли определенный набор задач, а при появлении новых их нужно было переобучать. На это уходили дополнительные финансовые и вычислительные ресурсы. Открытие лаборатории исследований искусственного интеллекта T-Bank AI Research и Института AIRI меняет ситуацию. Ученые первыми в мире создали модель в области контекстного обучения (In-Context Learning), которая на нескольких примерах сама может учиться новым действиям.
Инфляция — один из ключевых показателей экономической стабильности, и точное прогнозирование ее уровня в различных регионах имеет большое значение для государства, бизнеса и домохозяйств. Татьяна Букина и Дмитрий Кашин из НИУ ВШЭ в Перми выяснили, что машинное обучение для прогнозирования инфляции превосходит классические эконометрические модели в долгосрочных прогнозах.
Ученые НИУ ВШЭ работают над созданием приложения, которое позволяет установить, написан текст человеком или сгенерирован искусственным интеллектом. Подход, на который опирается приложение, носит универсальный характер и позволяет «ловить» самых разных ботов, построенных на разной архитектуре. В ближайшее время запланировано тестирование прототипа в широком диапазоне текстов. Предполагается, что платформа будет доступна пользователям в 2025 году.
Ежегодно в России около 10 тысяч человек погибает из-за пожаров. Самыми опасными из них считаются те, которые возникают на объектах с массовым пребыванием людей, например, на торговых площадях, где только за 2022 год произошло 2429 крупных возгораний. Существующие системы эвакуации не всегда позволяют пострадавшим оперативно определить, как добраться до ближайшего выхода. Ученые ПНИПУ разрабатывают современную систему управления эвакуацией. Технология с искусственным интеллектом поможет посетителям и сотрудникам МЧС с помощью телефонов строить оптимальные маршруты для спасения при пожарах. Эффективные и безопасные пути эвакуации будут строиться с учетом множества факторов.
Исследователи проанализировали научные статьи о диагностике рака кожи с помощью технологии искусственного интеллекта и выяснили, что чаще всего для этой цели используют сверточные нейросети, основанные на глубоком обучении. При этом самый точный результат (93 процента точности) дают системы, основанные на машинном обучении, что делает их наиболее предпочтительным методом диагностики. Кроме того, за последние пять лет точность таких алгоритмов повысилась более чем на девять процентов.
Исследователи из Сколтеха совместно с коллегами из Сбера предложили модели глубокого обучения для прогнозирования засух по климатическим данным. Долгосрочные прогнозы такого рода нужны сельскохозяйственным предприятиям для планирования своей деятельности, а страховщикам и банкам — для оценки соответствующих рисков и уточнения кредитных рейтингов корпоративных заемщиков.
Сокращение отходов производства приводит к снижению себестоимости конечного продукта, а, значит, к увеличению прибыли. Для изготовления деталей из сырья часто требуется раскрой из металлического листового материала на заготовки произвольной формы, например, в машиностроении, автомобильной промышленности, на металлообрабатывающих заводах и других производствах. Для экономии необходимо рационально разместить детали на полотне. Такой процесс известен как создание карты раскроя материала. Использование дорогостоящего сырья предъявляет еще более жесткие требования к качеству и методам решения проблемы. Ученые ПНИПУ разработали комбинированный алгоритм для оптимального расположения фигур на листе на основе технологии искусственных нейросетей.
Сколковский институт науки и технологий запускает медиапроект Kapitsa.AI. Это проект-эксперимент: на протяжении полугода команда разработчиков будет создавать цифрового двойника выдающегося российского физика и популяризатора науки Сергея Капицы. Создание цифрового двойника — это комплексная инженерная задача, включающая в себя поиск ИИ-решений, из которых будет состоять аватар, их оптимизацию под особенности проекта и синхронизацию.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Последние комментарии