Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
#искусственный интеллект
Зачем искусственному интеллекту миллионы синтетических «камней», как создать виртуального врача и при чем здесь «метод Монте-Карло»? Об этом и многом другом рассказал научный сотрудник института «Компьютерные науки и прикладная математика» МАИ, директор департамента цифровой трансформации в компании BetBoom Юрий Чайников.
Бурное развитие искусственного интеллекта предоставляет все новые возможности как для решения профессиональных задач, так и для творчества и самовыражения. Но это накладывает на человечество и обязанность обучаться новым технологиям, что в действительности не так просто, как кажется. О том, как эффективно пользоваться ИИ и с каких инструментов следует начинать, рассказал известный популяризатор и один из ведущих экспертов по искусственному интеллекту, кандидат физико-математических наук, доцент МАИ и НИУ ВШЭ Дмитрий Сошников.
Искусственный интеллект никогда не сравнится с естественной глупостью. Люди, обладающие такими технологиями, уничтожат себя с куда большей вероятностью, чем эти самые технологии. Когда появится ИИ уровня человека, какие профессии он заменит, нужно ли его бояться и кто лучше справится с задачей нарисовать лошадь, скачущую на астронавте, — языковая модель или любой из нас? Об этом Naked Science поговорил с Сергеем Марковым — управляющим директором и начальником управления экспериментальных систем машинного обучения департамента общих сервисов «Салют» «Сбера», одним из ведущих российских экспертов в области нейросетей, разработчиков сервисов Kandinsky и GigaChat и автором двухтомника «Охота на электроовец. Большая книга искусственного интеллекта».
В прошлом ИИ-системы выполняли определенный набор задач, а при появлении новых их нужно было переобучать. На это уходили дополнительные финансовые и вычислительные ресурсы. Открытие лаборатории исследований искусственного интеллекта T-Bank AI Research и Института AIRI меняет ситуацию. Ученые первыми в мире создали модель в области контекстного обучения (In-Context Learning), которая на нескольких примерах сама может учиться новым действиям.
Инфляция — один из ключевых показателей экономической стабильности, и точное прогнозирование ее уровня в различных регионах имеет большое значение для государства, бизнеса и домохозяйств. Татьяна Букина и Дмитрий Кашин из НИУ ВШЭ в Перми выяснили, что машинное обучение для прогнозирования инфляции превосходит классические эконометрические модели в долгосрочных прогнозах.
Ученые НИУ ВШЭ работают над созданием приложения, которое позволяет установить, написан текст человеком или сгенерирован искусственным интеллектом. Подход, на который опирается приложение, носит универсальный характер и позволяет «ловить» самых разных ботов, построенных на разной архитектуре. В ближайшее время запланировано тестирование прототипа в широком диапазоне текстов. Предполагается, что платформа будет доступна пользователям в 2025 году.
Ежегодно в России около 10 тысяч человек погибает из-за пожаров. Самыми опасными из них считаются те, которые возникают на объектах с массовым пребыванием людей, например, на торговых площадях, где только за 2022 год произошло 2429 крупных возгораний. Существующие системы эвакуации не всегда позволяют пострадавшим оперативно определить, как добраться до ближайшего выхода. Ученые ПНИПУ разрабатывают современную систему управления эвакуацией. Технология с искусственным интеллектом поможет посетителям и сотрудникам МЧС с помощью телефонов строить оптимальные маршруты для спасения при пожарах. Эффективные и безопасные пути эвакуации будут строиться с учетом множества факторов.
Исследователи проанализировали научные статьи о диагностике рака кожи с помощью технологии искусственного интеллекта и выяснили, что чаще всего для этой цели используют сверточные нейросети, основанные на глубоком обучении. При этом самый точный результат (93 процента точности) дают системы, основанные на машинном обучении, что делает их наиболее предпочтительным методом диагностики. Кроме того, за последние пять лет точность таких алгоритмов повысилась более чем на девять процентов.
Исследователи из Сколтеха совместно с коллегами из Сбера предложили модели глубокого обучения для прогнозирования засух по климатическим данным. Долгосрочные прогнозы такого рода нужны сельскохозяйственным предприятиям для планирования своей деятельности, а страховщикам и банкам — для оценки соответствующих рисков и уточнения кредитных рейтингов корпоративных заемщиков.
Сокращение отходов производства приводит к снижению себестоимости конечного продукта, а, значит, к увеличению прибыли. Для изготовления деталей из сырья часто требуется раскрой из металлического листового материала на заготовки произвольной формы, например, в машиностроении, автомобильной промышленности, на металлообрабатывающих заводах и других производствах. Для экономии необходимо рационально разместить детали на полотне. Такой процесс известен как создание карты раскроя материала. Использование дорогостоящего сырья предъявляет еще более жесткие требования к качеству и методам решения проблемы. Ученые ПНИПУ разработали комбинированный алгоритм для оптимального расположения фигур на листе на основе технологии искусственных нейросетей.
Сколковский институт науки и технологий запускает медиапроект Kapitsa.AI. Это проект-эксперимент: на протяжении полугода команда разработчиков будет создавать цифрового двойника выдающегося российского физика и популяризатора науки Сергея Капицы. Создание цифрового двойника — это комплексная инженерная задача, включающая в себя поиск ИИ-решений, из которых будет состоять аватар, их оптимизацию под особенности проекта и синхронизацию.
На нефтяных месторождениях для повышения нефтеотдачи пласта в нагнетательную скважину закачивают воду, которая увеличивает давление в добывающей скважине, продвигая тем самым нефть выше. Чтобы такое заводнение оставалось эффективным, очень важно регулярно контролировать связь между ними и проверять, чтобы вода свободно проходила по каналам пласта и попадала в нужное место. Сейчас это делается с помощью дорогостоящих и долгих индикаторных исследований. Ученые Пермского Политеха разработали уникальную модель на основе ИИ, которая быстро и точно определяет значения пластовых давлений в зависимости от объема закачки воды. Инновационный подход позволит с минимальными трудозатратами оценивать качество заводнения нефтяных пластов.
Уровень доверия к ИИ и стратегии принятия решений исследовал профессор кафедры психологии ФСГН Государственного университета «Дубна» Александр Венгер. Совместно с профессором МФТИ Виктором Дозорцевым они разработали математическую модель, описывающую возможные стратегии оператора для устранения аварий на объектах повышенной опасности.
Сотрудники Центра перспективных исследований в искусственном интеллекте РЭУ имени Г. В. Плеханова создали нейросеть для определения индекса счастья в университете. Команда центра провела несколько этапов вычисления индекса счастья. Сначала была предобучена модель MAE ViT (Masked Auto Encoder Vision Transformer) с собственными модификациями представления пространственной информации. Затем нейросеть обучили на задачах open-set распознавания лиц и определения эмоций человека.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Последние комментарии