• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
02.06.2017, 18:25
Редакция Naked Science
15,1 тыс

Ионолеты: в небо на ионном ветре

❋ 3.5

На наших глазах электроэнергия начинает играть все большую роль в транспорте. Вслед за электромобилями, успешно отвоевывающими себе место на дорогах, в небо поднимаются электросамолеты. Но для авиации такие изменения могут иметь далекоидущие последствия. Вполне возможно, что самолеты завтрашнего дня будут поднимать в небо не электромоторы, а атмосферные ионные двигатели. Появление ионолетов обещает качественный прорыв в авиатехнике.

Ионолет
©Wikipedia / Автор: Regulus Tremerus

Что это такое?

Сегодня ионолет, он же ионокрафт (или лифтер, с ударением на последнем слоге), – это только легкая летающая модель, способная мгновенно оторваться от поверхности, как только на провод, соединяющий ее с источником питания, будет подан электрический ток. Но для инженеров и фантастов это один из вариантов летательного аппарата будущего, имеющего весьма заманчивые характеристики. Он будет экологически чистым, в отличие от современных самолетов и вертолетов, бесшумным и без значительных усилий сможет вертикально взлетать и садиться. Во всяком случае, так его представляют исследователи. Не это ли технология для летающих автомобилей будущего?

Подъемная сила в таком аппарате создается благодаря эффекту Бифельда – Брауна. Еще в 20-х годах прошлого века американскими учеными Томасом Брауном и ассистировавшим ему Полом Бифельдом, экспериментировавшими с рентгеновскими трубками Кулиджа, был обнаружен необычный эффект. Некая сила действовала на заряженный до высокого напряжения асимметричный конденсатор. Ее было достаточно даже для того, чтобы поднять конденсатор в воздух. Сам ученый поначалу был уверен, что нашел способ влиять на гравитацию с помощью электричества. Тогда, открытому явлению, даже дали соответствующее название – «электрогравитация». Сегодня такие опыты популярны не только у школьников и студентов, увлекающихся физикой, но и среди сторонников различных теорий, не признаваемых современной наукой. По их мнению, ионный ветер дает только 10-20% тяги ионного двигателя, остальные дает пока не известная науке сила.

Вот только если бы дело было в гравитации, а не в движении заряженных ионов воздуха, как есть на самом деле, то устройство одинаково хорошо работало бы как в воздушной среде, так и в вакууме. Но в результате множества опытов было установлено, что в отсутствие газовой среды устройство не работает. В вакууме эффект исчезает. Здесь не стоит путать ионолет (атмосферный ионный двигатель) с ионными двигателями, все чаще применяемыми в космических аппаратах. Они-то как раз и предназначены для работы в вакууме. Такой двигатель свободно работает в безвоздушной среде, так как реактивная тяга возникает на базе запасенного рабочего тела, которым, как правило, является инертный газ (аргон, ксенон и т. п.). Им космический аппарат заправляют до старта. В случае ионолета его рабочим телом фактически является забортный воздух, который, разумеется, с собой брать в полет не надо.

Секрет подъемной силы ионолета прост. При очень высоком напряжении межу электродами – анодом и катодом – возникает ионный (или электростатический) ветер. Это явление также называется электрогидродинамическим эффектом (ЭГД). Причем один электрод, как правило, тонкий или острый, другой – широкий и плоский. То есть они не симметричны друг другу. Таким образом, получается левитирующий асимметричный воздушный конденсатор.

Ионолеты: в небо на ионном ветре – иллюстрация к материалу на Naked Science
Один из вариантов модели ионолета / © jlnlabs.org

Около отрицательно заряженного электрода молекулы воздуха ионизируются. Они получают отрицательный заряд и начинают двигаться к электроду с положительным зарядом. При этом они увлекают на своем пути нейтральные молекулы воздуха, чем и создается необходимая тяга для полета. Причем полной ионизации проходящего через аппарат воздуха не требуется.

Простейшая схема летательного аппарата выглядит следующим образом. Отрицательно заряженные электроды представляют собой металлические острия. Их несколько, и они расположены над металлической сеткой с положительным зарядом. Образовывающиеся между ними ионы устремляются к сетке, где и расстаются со своим зарядом, выходя из двигателя уже обычными молекулами воздуха. Тем самым электроэнергия высокого напряжения преобразуется в кинетическую энергию воздушного потока. Такой ионный двигатель еще называют электростатическим движителем (ЭСД).

Регулируя напряжение на электродах, можно дать команду на взлет и посадку, изменяя напряжение только на некоторых электродах, можно наклонять и поворачивать аппарат. И при этом никаких движущихся частей двигатель на ионном ветре не имеет. Конструкция проста, а перспективные варианты движителя не предполагают серьезного технического обслуживания, смазки и т. п.

Считается, что сам термин «ионокрафт» (ionocraft), в русском варианте «ионолет», придумал наш соотечественник. Пионер авиации, летчик-ас Первой мировой войны, покинувший Россию после революции, авиатор, изобретатель и авиаконструктор Александр Николаевич Прокофьев-Северский. Он же в 1964 году получил патент на свой летательный аппарат. За годы, проведенные в Америке, Северский работал консультантом при Министерстве обороны, основал две авиастроительные фирмы, сконструировал несколько удачно себя показавших самолетов, стал автором множества изобретений и патентов. Однако коммерческого успеха так и не добился. В 1939 году Северский был отстранен инвесторами от управления основанной им компании. После чего он занялся писательской деятельностью, читал лекции и благодаря своему умению выступать на публике получил широкую известность, а в 60-х годах занялся ионолетами. Северский подробно описал физику эффекта и запатентовал основные принципы работы ионолета.

Модель, созданная Северским, представляла собой прямоугольную рамку из бальсы (дерева, древесина которого считается самой легкой в мире) с натянутой на нее алюминиевой проволокой. Электрическая энергия подводилась к аппарату по коаксиальному кабелю. Но сделать что-то большее у него не получилось. Попытка Северского построить ионокрафт, способный подняться в воздух с человеком на борту, не удалась. Формально по причине отсутствия денег. Но все-таки основная сложность создания такого аппарата кроется в другом. Даже сейчас модели ионолетов не способны нести на себе собственный источник питания. Все модели подключаются к внешнему источнику питания, так как собственный им поднять еще не под силу, не говоря уже о пилоте или дополнительном оборудовании.

Ионолеты: в небо на ионном ветре – иллюстрация к материалу на Naked Science
Летающая модель ионолета и проект одноместного аппарата А. Н. Северского / © Popular Mechanics

Не все так просто

В чем же проблема? Атмосферному ионному двигателю требуется ток очень высокого напряжения. В то же время к идее ионолета не так давно вернулись снова. И не кто-то, а исследователи из Массачусетского технологического института (MIT), который, как известно, является новатором в области перспективных технологий. Согласно их выводам, для подъема в воздух беспилотного аппарата с оборудованием на борту и собственным источником питания потребуется несколько сотен или даже тысяч киловольт. Для сравнения, в бытовой эклектической сети напряжение тока составляет 220 вольт. Это всего 0,22 киловольта. Легкой экспериментальной модели ионолета, сделанной в лаборатории MIT, потребовалось напряжение всего в несколько киловольт. В качестве отрицательно заряженного электрода выступил тонкий медный провод, а положительного – легкая алюминиевая трубка. Каркас был склеен из бальсы.

Но в целом результаты опыта оказались обнадеживающими. Они показали, что двигатели, основанные на эффекте Бифельда – Брауна, могут быть гораздо более эффективными, чем традиционные. Эксперименты показали, что тяга такого атмосферного ионного двигателя может составлять до 110 ньютонов на киловатт мощности, тогда как традиционные реактивные двигатели имеют показатель всего 2 ньютона на киловатт.

Но есть и другая сложность в создании таких аппаратов. В сравнении с традиционными реактивными двигателями, атмосферный ионный двигатель существенно уступает по показателю «плотности» тяги, то есть ее количеству на единицу рабочей площади. Объясняется это тем, что ее величина напрямую зависит от ширины воздушного зазора между анодом и катодом. Чем он больше, тем сильнее тяга. Следовательно, чтобы создать даже легкий летательный аппарат, потребуется разместить электроды на большом расстоянии друг от друга. Фактически такие зазоры будут определяться максимально возможными габаритами летательного аппарата. Таким образом, сам фюзеляж, окруженный электродами, будет находиться внутри электростатического движителя.

Ионолеты: в небо на ионном ветре – иллюстрация к материалу на Naked Science
Ионолет в виде «летающей тарелки» / © Popular Mechanics

Впечатляющие перспективы

Если верить обещаниям исследователей, передвигаться такой аппарат сможет бесшумно и не будет иметь вредных выбросов. Кроме того, он сможет вертикально взлетать, садиться, а также зависать над поверхностью. В этом он подобен вертолету. Но, в отличие от последнего, отсутствие вибрации позволит создать идеальный комфорт в пассажирской кабине. Взлетать и садиться такие аппараты смогут в непосредственной близости от жилых и административных зданий, не создавая шума, а следовательно, и неудобства окружающим. В прошлом такие летательные аппараты представлялись пилотируемыми, но сейчас с развитием беспилотной техники можно сказать, что первые ионолеты будут обходиться без человека на борту.

Незаменим он окажется и на военной службе. Ионолет невидим в инфракрасном диапазоне, что является настоящей находкой для военных. Такой беспилотный летательный аппарат можно будет использовать для разведывательных и иных миссий, не рискуя быть обнаруженным прибором ночного видения. Реализован ионолет может быть и в виде левитирующей платформы, получающей питание с земли по проводам. Летающий строительный кран, беспилотник для патрулирования дорожного движения, метеозонд, отслеживающий изменения погоды. Ему можно найти много способов применения.

Могут пригодиться ионолеты и для полетов в атмосфере других планет. Ведь им не надо нести на борту топливо. Но все-таки, осталось решить вопрос с мощным источником питания.

Ионолеты: в небо на ионном ветре – иллюстрация к материалу на Naked Science
Сравнение экономичности несущей системы вертолета и ионолета (электростатического движителя) / © «Техника-молодежи»

Сделай сам

Если есть опыт работы с электричеством, сделать простейшую летающую модель ионолета можно и самому. При этом необходимо предпринять соответствующие меры предосторожности, так как придется работать с током высокого напряжения. В основе конструкции – склеенная из тонких бальсовых планок треугольная рама. Верхний электрод – тонкая медная проволока сечением 0,1 кв. мм. Нижний – широкая полоска из пищевой алюминиевой фольги, натянутая на раму. Расстояние между ними – около 30 мм. Фольга должна огибать планки и не иметь острых ребер, в противном случае может возникнуть электрический пробой.

Ионолеты: в небо на ионном ветре – иллюстрация к материалу на Naked Science
Простейшая модель ионолета /© linux-host.org

После сборки конструкции к ней подключается высоковольтный источник питания с напряжением 30 кВ. Положительный вывод – к проводу, отрицательный – к фольге. Чтобы модель не улетела, ее нужно привязать к столу капроновыми нитями. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
9 декабря, 10:59
НИУ ВШЭ

Специфическая тревога из-за ненадежности цифровых образов реальности и иллюзии тотального контроля над действительностью получила название «аффект зомби». Заведующий кафедрой философии НИУ ВШЭ — Санкт-Петербург Иван Микиртумов исследовал феномен в рамках проекта РНФ «Экзистенциальный опыт в цифровой среде».

8 декабря, 13:09
Александр Березин

С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.

10 декабря, 11:49
Игорь Байдов

Раскопки мастерской, погребенной в Помпеях почти 2000 лет назад, помогли археологам больше узнать о римских строительных технологиях, а именно — определить методы изготовления римского бетона и раскрыть секрет его долговечности.

8 декабря, 13:09
Александр Березин

С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.

9 декабря, 10:59
НИУ ВШЭ

Специфическая тревога из-за ненадежности цифровых образов реальности и иллюзии тотального контроля над действительностью получила название «аффект зомби». Заведующий кафедрой философии НИУ ВШЭ — Санкт-Петербург Иван Микиртумов исследовал феномен в рамках проекта РНФ «Экзистенциальный опыт в цифровой среде».

8 декабря, 10:59
НИУ ВШЭ

Команда психолингвистов Центра языка и мозга НИУ ВШЭ обнаружила, что у подростков в возрасте 15–18 лет навыки фонологической обработки продолжают влиять на скорость чтения текстов. Это открытие опровергает убеждение, что к подростковому возрасту эти навыки уже не играют значимой роли в беглости чтения.

8 декабря, 13:09
Александр Березин

С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.

29 ноября, 12:42
Александр Березин

Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?

27 ноября, 20:20
Максим Абдулаев

Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно