Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Исследователи нашли потенциальный способ передачи звука в космосе
Физики из Финляндии доказали на практике результативность эффекта «вакуумного туннелирования фононов». При определенных условиях звуковые колебания могут «перепрыгивать» из одного тела в другое даже через вакуумный зазор.
Звук — упругие волны, которые распространяются в среде, где есть молекулы, атомы или ионы, через вещество в твердой, жидкой, газообразной и плазменной фазах. Передача звука происходит посредством звуковых волн, то есть звуковых (механических) колебаний в среде, которая эти самые колебания поддерживает.
В космической пустоте звуковые волны распространяться не могут, поскольку там практически нет молекул, атомов и ионов.
В 2010 году физики из нескольких университетов США оспорили утверждение, что звук невозможно передать в пустоте. В своем исследовании они предположили, что звуковые колебания могут «перескакивать» из одного твердого тела в другое через вакуумный зазор субмикронной толщины. Этот эффект получил название «вакуумное туннелирование фононов».
Фонон — квазичастица, квант энергии колебательного движения атомов тела, которые образуют идеальную кристаллическую решетку. По словам американских физиков, описанный ими эффект работает за счет взаимодействия между электрическим полем и звуковыми волнами в кристалле.
Когда колебания кристаллической решетки «доходят» до одной из граней кристалла, вблизи его поверхности создаются переменные электрические поля, которые затем «чувствуются» на другом краю вакуумного зазора. После чего эти поля раскачивают колебания кристаллической решетки в другом кристалле.
Это можно представить так: один фонон «перепрыгивает» через вакуум из первого кристалла во второй и распространяется в нем дальше, хотя в пространстве между телами фонона нет.
В своей научной работе американские ученые описали несколько механизмов, с помощью которых можно добиться эффективной связи между колебанием кристалла и электрическим полем. Однако на практике эти механизмы до недавнего времени никто не проверял.
Группа физиков из Центра нанотехнологий при Университете Йювяскюля (Финляндия) провела эксперимент и выяснила, как и при каких условиях звуковые волны могут «перепрыгивать» через пустоту, разделяющую два твердых тела. Результаты исследования представлены в журнале Communications Physics.
В эксперименте ученые использовали два одинаковых пьезоэлектрических кристалла на основе оксида цинка. Пьезоэлектрики — вещества, которые электризуются при деформации и деформируются в электрическом поле.

Звуковые волны вызывают механическое напряжение. Пьезоэлектрические кристаллы могут преобразовывать это напряжение в электрическое поле, и наоборот. Эти кристаллы растягиваются или сжимаются под действием звуковых волн, в результате преобразованное электрическое поле может изменяться.
Когда звуковая волна достигает края первого кристалла, электрическое поле, связанное с ним и проходящее «сквозь» пустоту, изменится и деформирует другой кристалл — значит, звуковая волна «перескочила» через вакуум от одного тела к другому.
После того как ученые разместили кристаллы в специальной установке друг напротив друга, отделив их вакуумным зазором, один из кристаллов преобразовал электрическую энергию обратно в механическую, и звуковая волна от первого кристалла «перескочила» через зазор к другому. Добиться этого получилось только при определенных условиях: кристаллы разделяло расстояние, не превышающее длину исходной звуковой волны.
Финские физики объяснили, что этот эффект работает с разными диапазонами звуковых частот: как с «герцевым» и «килогерцевым», так и с диапазонами, лежащими ниже диапазона слышимости человека, — с ультразвуком (МГц) и гиперзвуком (ГГц). По мере увеличения частоты вакуумный зазор в эксперименте уменьшался.
«Зачастую звуковая волна перепрыгивала через зазор слабо, однако были случаи, когда она проходила полностью со стопроцентной эффективностью, причем без каких-либо отражений», — объяснил Илари Маасилта, соавтор исследования.
Конечно, этот эксперимент нельзя считать прямым доказательством того, что звуковые волны способны распространяться в вакууме, но зато результаты исследования могут пригодиться в других областях науки. В частности, в разработке микроэлектромеханических компонентов, которые используются в барометрах, датчиках угловых скоростей, гироскопах, акселерометрах.
Интересно, что эксперименты по передаче инфразвука авторы работы не проводили. Если для них работают те же принципы, то достаточно большие пьезокристаллы могут передавать в космической пустоте звуковые волны и на весьма существенные расстояния, ведь длина инфразвуковой волны достигает десятков метров.
До сих пор совместные наблюдения гравитационно-волновых обсерваторий LIGO, Virgo и KAGRA показывали только 90 кандидатов в слияния, порождающие гравиволны. Новый каталог более чем удвоил число этих объектов и породил серьезные астрофизические вопросы.
Всего одна доза психоактивного вещества из галлюциногенных грибов способна «перепрошить» мозг. К такому выводу пришли авторы нового исследования. Они выяснили, что псилоцибин целенаправленно изменяет работу мозговых сетей, ответственных за навязчивые негативные мысли. Это открытие объясняет терапевтический эффект вещества при тяжелых психических расстройствах.
В астрономии размер имеет большое значение: от диаметра главного зеркала телескопа напрямую зависит его разрешающая способность. Если на Земле габариты научных инструментов ограничены скорее бюджетами их строителей, то для космических телескопов мы достигли технологического предела. Что-то сложнее и крупнее «Джеймса Уэбба» построить фактически невозможно, по крайней мере, в ближайшие десятилетия. А для получения прямых изображений землеподобных экзопланет нужно зеркало в 10 раз крупнее. Но американские инженеры и астрономы нашли любопытное геометрическое решение этой проблемы.
Компания впервые смогла устранить недоработки Starship V2 в достаточной степени, чтобы выполнить всю намеченную программу испытаний в одном полете. Впрочем, без сбоев не обошлось и на этот раз. Традиционные американские космические игроки продолжают считать, что задержки с программой позволят Китаю выиграть вторую лунную гонку у США.
Согласно выводам авторов нового исследования, сумчатый волк, или тилацин, проиграл эволюционную битву за выживание за миллионы лет до того, как первый человек ступил на австралийскую землю. Оказалось, этот вид хищных сумчатых постепенно терял ключевые гены, что сделало его уязвимым перед лицом природных изменений. Человек и динго лишь довершили процесс.
Физики из МФТИ и Всероссийского научно-исследовательского института автоматики имени Н.Л. Духова (ВНИИА) предложили и теоретически обосновали новый способ создания макроскопических квантовых состояний света, известных как «коты Шредингера». Механизм, основанный на рассеянии лазерного излучения на свободных электронах, открывает путь к созданию таких состояний в условиях, где другие, более известные методы, не работают. Это достижение не только расширяет фундаментальное понимание взаимодействия света и материи, но и предоставляет новый инструмент для развития квантовых технологий.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Влияет ли формат знакомства на качество последующих романтических отношений в паре? Научные данные на этот счет разнятся. Новое исследование по вопросу представила группа психологов из Польши, Австралии и Великобритании. В попытке понять, при каком сценарии удовлетворенность отношениями выше, а любовь крепче — когда двое нашли друг друга в Сети или познакомились в жизни, — ученые опросили свыше 6000 тысяч человек из разных стран.
Тщательный анализ спутниковых снимков позволил ученым оценить изменение скорости фотосинтеза на планете с 2003 по 2021 годы. Ситуация оказалась несколько неожиданной: если на суше растения явно «ускорились», то в океане ситуация намного менее определенная.

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии