• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
01.12.2018
Редакция Naked Science
7
14 205

Что такое квантовая биология

3.9

Все во Вселенной состоит из элементарных частиц. Изучением их и связанных с ними явлений занимается квантовая физика — странная наука, где много всего неопределенного. Но что, если квантовые эффекты распространяются не только на квантовые масштабы, но и на жизнь в целом? Поисками ответа на этот вопрос и занимается квантовая биология.

Квантовая биология
©Wikipedia / Автор: Telestis Scaevinius

«Если тебя квантовая физика не испугала, значит, ты ничего в ней не понял».  © Нильс Бор, лауреат Нобелевской премии 1922 года, один из создателей современной физики

Биологи не очень любят связываться с физикой. Будучи студентами, они посещают вводные курсы по физике, а потом благодарят богов науки, что им больше не придется беспокоиться об Эйнштейне, Максвелле и Ньютоне. Что касается квантовой физики, то большинству биологов вообще нет нужды о ней задумываться. Они изучают молекулы в таких крупных масштабах, что им не надо знать ничего сверх основ квантовой механики. Привычной модели молекулы достаточно для изучения взаимодействий между триллионами органических молекул. Физики же изучают квантовую механику в вакууме при почти абсолютном нуле. Принято считать, что в условиях тепла и беспорядка, царящих в живых клетках, квантовые эффекты можно, по сути, игнорировать.

Между тем некоторые ученые предполагают, что существуют биологические феномены, которые можно объяснить квантовой механикой — и только. В своей книге «Что такое жизнь?» Эрвин Шредингер постулировал, что квантовая механика способна оказывать серьезное воздействие на клеточные функции. Он предположил, что генетический материал может храниться и наследоваться посредством сохранения информации в разных квантовых состояниях. И пусть позднее Джеймс Уотсон и Фрэнсис Крик выяснили, что ДНК — переносчик генетической информации, Шредингер дал начало квантовой биологии.

Квантовое туннелирование

Не так давно продуманные до мелочей эксперименты предоставили доказательство того, что квантовая биология сильно влияет на жизнь. Оказалось, ферменты — катализаторы реакций в клетке — используют так называемый туннельный эффект, или квантовое туннелирование. При помощи этого механизма они могут перемещать электрон или протон из одной части молекулы в другую.

Квантовое туннелирование предоставляет ферментам быстрый и эффективный способ переорганизации молекул для поддержания реакций. Этот процесс невозможно объяснить при помощи классической физики. Для понимания этих реакций необходимы квантовые вероятности и дуальности.

Туннельный эффект также играет роль в мутациях ДНК. ДНК — это двухцепочечная молекула, части которой удерживаются вместе при помощи водородных связей. Эти связи можно изобразить примерно так (см. картинку).

Диаграмма водородной связи в аденин-тимине / © Adam David Godbeer/Jim Al-Khalili/P. D. Stevenson

Белые атомы принадлежат водороду. В этом соединении есть две водородные связи. Считается, что атомы водорода могут «перепрыгивать» на другую сторону при помощи квантового туннелирования. Если цепочки ДНК разделены во время прыжка водорода на другую сторону, то эти связи могут скопироваться или воспроизвестись неправильно. Мутация, появившаяся в результате туннелирования водорода, потенциально может вызвать заболевание.

Квантовая когерентность

Фотосинтез — один из самых важных процессов жизни. Когда фотон света попадает в пигмент, он поглощается, а вместо него освобождается электрон. Затем электрон попадает в электрон-транспортную цепь, накапливающую химический потенциал, который можно использовать для генерации АТФ (аденозинтрифосфат, или аденозинтрифосфатная кислота). Но чтобы попасть в электрон-транспортную цепь, электрону нужно переместиться из одной точки, из которой его освобождает фотон, через хлорофилл, в точку, известную как реакционный центр. Есть множество путей, по которым электрон может достичь его.

Квантовая когерентность в фотосинтезе / © Jim Al-Khalili

При помощи принципов квантовой когерентности и квантового запутывания электроны могут перемещаться по самым эффективным путям, не затрачивая энергию на тепло. Согласно квантовой когерентности электроны могут двигаться в нескольких направлениях одновременно из-за своих волнообразных свойств. Таким образом, электроны способны перемещаться по нескольким разным путям одновременно для достижения реакционного центра. Этот феномен позволяет максимально эффективно переносить энергию.

Квантовая когерентность может влиять и на другие аспекты жизни. Некоторые ученые предполагают, что сетчатка человеческого глаза использует когерентность для передачи сигналов из глаза в мозг. Они утверждают, что фотоизомеризация — изменение в структуре фотонного рецептора — происходит так быстро, что такую скорость может обеспечить только квантовая когерентность. С учетом этого в природе вполне может существовать еще множество биохимических путей, использующих квантовую когерентность, и они только и делают, что ждут, когда их наконец откроют.

Квантовая запутанность

Запутанность — одна из самых сложных для понимания концепций квантовой механики. Она описывает взаимодействие между двумя или более квантовыми частицами. И пусть это еще не подтверждено, считается, что квантовая запутанность может объяснить магниторецепцию. Магниторецепция — способность организмов чувствовать магнитное поле и определять свое расположение на местности в соответствии с ним. Птицы и животные используют эту способность, чтобы чувствовать магнитное поле Земли и мигрировать. Долгое время точный механизм этого явления был тайной. Возможно, магнитное поле Земли влияет на механизм, использующий радикальные пары внутри сетчатки, а запутанность внутри этой пары может предоставлять организмам квантовый сигнал, работающий словно компас: об этом рассуждали Джим Аль-Халили и Джонджо МакФадден в своей книге «Жизнь на грани. Ваша первая книга о квантовой биологии».

Схематическое описание «квантового компаса» у птиц / © Zhang-qi Yin/Tongcang Li

Что же дальше?

Квантовая механика может влиять на многие биохимические функции. Некоторые считают, что обоняние — то, как мы чувствуем запахи — может быть результатом квантовых вибраций молекул. В то же время существуют исследования, указывающие на то, что с квантовой механикой связано броуновское движение внутри клетки. 

В любом случае квантовая биология — молодое направление науки, но похоже, что у него есть серьезный потенциал. Остается только ждать и наблюдать за новыми исследованиями в этой области.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Вчера, 13:48
Юлия Трепалина

Многие предпочитают вступать в романтические отношения с людьми примерно своего возраста, но есть и пары с существенной возрастной разницей. Международная группа ученых недавно на крупной выборке людей проследила за изменениями возраста партнеров на старте отношений в разные годы жизни.

Сегодня, 07:51
Юлия Трепалина

Китайские урологи исследовали взаимосвязь между употреблением разных соков и случаями эректильной дисфункции у американских мужчин. Анализ выявил статистически значимую корреляцию между регулярным питьем виноградного сока и меньшей частотой таких нарушений.

Вчера, 10:00
РНФ

Ученые опубликовали в глобальной информационной системе о биоразнообразии GBIF набор данных о распространении дождевых червей на территории России и сопредельных стран, составленный по материалам публикаций советских и российских почвенных зоологов. Исследователи часто используют цифровые порталы в своих работах. Однако до сих пор существует проблема нехватки данных для многих регионов и групп организмов. В ходе исследования, поддержанного грантом Российского научного фонда (РНФ), найдено и проанализировано более 300 статей, из которых извлечено порядка 5 000 записей о точках распространения видов дождевых червей на территории современной России и бывшего СССР. Данные помогут улучшить подходы к сохранению экосистем и оценке биоразнообразия, а также создавать более точные модели ареалов этой группы организмов.

Вчера, 13:48
Юлия Трепалина

Многие предпочитают вступать в романтические отношения с людьми примерно своего возраста, но есть и пары с существенной возрастной разницей. Международная группа ученых недавно на крупной выборке людей проследила за изменениями возраста партнеров на старте отношений в разные годы жизни.

11 января
Полина Меньшова

Если микропластиком называют частицы пластика размером примерно от 5 миллиметров до 1 микрона (0,001 миллиметра), то нанопластик — еще более мелкие частицы. Ученые из Южной Кореи обнаружили, что накопление нанопластика в организме способно не только вызвать серьезные болезни, но и заметно изменить социальное поведение.

Вчера, 11:00
НИУ ВШЭ

Ученые из России, в числе которых два выпускника НИУ ВШЭ, опровергли известную в математике гипотезу, которая, хотя и не имела убедительного доказательства, считалась верной на протяжении 40 лет.

27.12.2024
ФизТех

Ученые из Троицкого института инновационных и термоядерных исследований, МФТИ и МЭИ совершили значительный прорыв в области защиты материалов от экстремальных тепловых нагрузок, характерных для условий управляемого термоядерного синтеза.

26.12.2024
Полина Меньшова

Согласно популярному утверждению, человеческая мысль — едва ли не самое быстрое, что существует в природе. Даже свет многие считают менее быстрым, поскольку он распространяется со скоростью 300 тысяч километров в секунду, а мысль — «мгновенно». Однако новое исследование опровергло бытовую логику. Ученые из Калтеха измерили скорость, с которой человек обрабатывает информацию, и обнаружили, что основные когнитивные процессы во много раз медленнее не только распространения света, но и низкоскоростного интернета.

28.12.2024
Андрей

Группа климатологов проанализировала массив спутниковых снимков озер и водохранилищ по всей планете, сделанных с 1984 по 2021 год. Ученые обратили внимание на цвет поверхности водоемов и выяснили, что у большинства он изменился — преимущественно в сторону коротковолнового диапазона. Иными словами, экология десятков тысяч озер оказалась нестабильной.

[miniorange_social_login]

Комментарии

7 Комментариев
-
0
+
Мне думается, квантовая биология станет ближе для понимания, если взглянуть на атом, ядерную частицу, на связь атомов с несколько иной точки зрения. Именно с той, о которой говорил Эрвин Шрёдингер. И сама ядерная частица, и ядро в целом являются компактным волновым образованием в среде физического вакуума. Все колебания и волны здесь кратны постоянной Планка. Шрёдингер так и не принял вероятностную интерпретацию его волновой функции, он считал, что стоячие волны частиц - не фикция, а реальный волновой процесс. Добавлю, что устойчивая связь между такими волновыми частицами устанавливается тоже на основе волновой функции (см. рис.). Основа органики - углерод, атом, способный устанавливать максимальное число связей (четыре). Не будь у углерода такой способности - не было бы органических соединений вообще. И ещё надо обратить внимание на один момент. Органическое вещество и жизнь вообще сформировались в условиях огромного атмосферного давления на нашей планете. К тому же - в водной среде, которая стала бульоном для "варки" органики. Наконец, не только электроны участвуют в биохимических реакциях, но и позитроны. Во всех химических реакциях в живых клетках идёт разделение зарядов, электроны и позитроны рождаются в равных количествах, создавая потенциалы. Накопление этих потенциалов и разряд их обусловливает все биохимические процессы в организме. Даже спираль ДНК не стала бы спиралью, если бы ни волновая природа частиц и характер их движения и связи.
Илья
02.12.2018
-
0
+
Я не знаю, в статье намеренно описано детально отношения между квантовыми понятиями и биологическими объектами или просто по-другому не можете описать? Говорите проще и понятнее и в общих понятиях - это будет понятнее. Приблизительно это будет звучать так - Наш мир един, он много уровневый, фрактальный и, самое главное он энергетический. Энергия стоит во главе угла всего сущего. Следует ещё добавить, что свойства пространства, свойства материи и свойства времени зависят от энергетического колебательного процесса плюса и минуса, которые и являются альфой и омегой строения мироздания. А уж биологические объекты стоят в ранге о об уровнях на последнем месте, как производные деятельности энергетических объектов. А наш мир следует называть энергетическим, а не материальным. Вот если всё это понять, то и понимание влияния квантовых процессов на биологические процессы станет простым и очевидным.
".. Квантовая механика может влиять на многие биохимические функции.." Предлагаю поменять местами части утверждения, чтобы оно выглядело так: многие биохимические функции используют принципы квантовой механики в своих интересах.
".. ферменты — катализаторы реакций в клетке — используют так называемый туннельный эффект, или квантовое туннелирование.." Допустимо, что на микроскопическом уровне молекулы, имея некоторый разум, умеют управлять неорганическими нано-частицами. Органика разумна при любых крошечных размерах, и умеет обходиться с атомами неорганики в своих интересах.
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно