• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
01.08.2019, 23:08
Ольга Иванова
9,9 тыс

Нейросети и медицина: как ИИ помогает анализировать данные биопсии

❋ 3.6

Искусственный интеллект становится неотъемлемой частью медицины. Научный сотрудник лаборатории Philips Research Lab Rus Федор Мушенок рассказал о роли ИИ в патоморфологии.

Нейросети и медицина: как ИИ помогает анализировать данные биопсии – иллюстрация к материалу на Naked Science
Анализ биопсии при помощи цифровой гистопатологии / ©Пресс-служба Philips Research / Автор: Павел Сорокин

— Что такое патоморфология и в каких сферах медицины она применяется?

— В современной медицине представлено множество различных высокотехнологичных средств для постановки правильного диагноза, выбора оптимального метода лечения и оценки его эффективности. В арсенале врачей сегодня есть такие методы диагностики, как анализ крови пациента, ультразвуковое исследование (УЗИ), магнитно-резонансная томография (МРТ), компьютерная томография (КТ) и другие.

Несмотря на многообразие неивазивных методов, иногда точный диагноз может быть поставлен одним единственным способом – с помощью анализа патологической ткани через микроскоп. Это особенно актуально в случаях перерождения здоровых клеток и возникновения новообразований. Область медицины, в которой используются такие диагностические методы, и называется патоморфологией.

Нейросети и медицина: как ИИ помогает анализировать данные биопсии – иллюстрация к материалу на Naked Science
Анализ биопсии при помощи цифровой гистопатологии / ©Пресс-служба Philips Research

— Как проходят стандартная процедура биопсии и дальнейший анализ тканей?

— Для проведения патоморфологического исследования сначала необходимо получить биологический материал для изучения. На анализ могут быть направлены образцы тканей, полученные как в процессе биопсии, так и в результате хирургического вмешательства. Из этих образцов с помощью специального высокоточного оборудования создаются тончайшие срезы, которые раскладываются на предметные стекла.

Затем врач-патологоанатом изучает под микроскопом структуру этих срезов, анализирует и делает соответствующие выводы. По сути, врач видит проблемы в организме не на уровне симптомов и жалоб пациента, а на уровне клеток и происходящих в них процессов. Таким образом он может различить два заболевания, обладающих схожими симптомами, и поставить правильный диагноз.

Для улучшения изображений и выделения нужных структур врачи используют специальные химические соединения – красители. Они наносятся на исследуемые образцы и окрашивают разные структурные элементы клеток в яркие цвета, тем самым облегчая визуальную диагностику.

С развитием техники врач может не только рассмотреть образец через окуляр микроскопа, но и получить цветные изображения изучаемого среза. Такая цифровая фотография может быть сохранена для последующего анализа или обсуждения с коллегами.

Как искусственный интеллект помогает в работе патоморфологов?

— До недавнего времени результаты патоморфологического исследования целиком и полностью зависели от врача, который его проводит. Уровень профессиональной подготовки и личностные качества доктора (внимание к деталям, скрупулезность), качество подготовки исследуемого материала и многие другие факторы кардинально влияют на эффективность патоморфологического анализа и точность диагноза. Внедрение искусственного интеллекта позволяет с одной стороны значительно улучшить качество патоморфологических исследований, с другой – снизить их стоимость и сократить время от процедуры до получения результатов.

Нейросети и медицина: как ИИ помогает анализировать данные биопсии – иллюстрация к материалу на Naked Science
Анализ биопсии при помощи цифровой гистопатологии / ©Пресс-служба Philips Research

— Давайте рассмотрим несколько примеров использования искусственного интеллекта в патоморфологии.

— Алгоритмы компьютерного зрения успешно различают изображения кошек и собак, распознают людей по фотографиям, определяют степень зрелости клубники и решают множество сложных задач по анализу изображений, которые раньше мог выполнить только человек. Эти же алгоритмы могут быть использованы для анализа изображений клеток.

Представьте систему поддержки принятия врачебных решений, в которой умные алгоритмы анализируют изображения тканей, выявляют и классифицируют пораженные клетки, а затем сообщают врачу об этих находках. Кроме того, доктор сразу же получает дополнительную полезную информацию (например, сведения о концентрации таких клеток, о стадии заболевания, об особенностях внутриклеточных процессов и так далее), которая поможет ему при постановке диагноза. Такая система не способна заменить врача, но значительно облегает его каждодневный труд и оптимизирует работу всего отделения.

Другим перспективным применением ИИ в гистопатологии (этим термином называют микроскопическое изучение пораженной ткани, важный инструмент патоморфологии) является поиск похожих изображений. Сейчас подобные сервисы предоставляются крупными поисковыми системами и позволяют найти множество изображений одного товара.

К примеру, пользователь загружает фотографию стула и получает множество изображений других стульев всех возможных конструкций и цветов. Кроме того, он получает их описания, цены и адреса онлайн-магазинов, где можно их купить. Аналогичные сервисы разрабатываются и для гистологических изображений.

Загружая изображения одного среза, врач получает множество снимков похожих срезов, на которых была обнаружена такая же или похожая патология. В дополнение ему предоставляются сведения о диагнозах, соответствующих этим изображениям, комментарии других врачей, ссылки на релевантные научные работы и другая полезная информация. Роль таких сервисов в медицине трудно переоценить.

Допустим, опытный врач сталкивается с редкой патологией, которую он раньше никогда не видел. Сервис поиска похожих изображений покажет ему подобные случаи и поможет поставить правильный диагноз. Для начинающих врачей и студентов-медиков такой ресурс станет настоящей энциклопедией, в которой собраны практические знания тысяч врачей из разных уголков мира.

Для ученых подобный сервис предоставляет уникальную возможность анализировать и сравнивать медицинские изображения, исследовать заболевания, находить закономерности и разрабатывать новые эффективные методы лечения.

Какие проекты есть в этой области у Philips?

— Компания Philips является одним из мировых лидеров в цифровой гистопатологии. Клиники по всеми миру успешно внедряют IntelliSite Pathology Solution — автоматизированную систему создания, просмотра и управления цифровыми изображениями патологий. Система состоит из цифрового слайд-сканера, системы управления изображениями и дисплея. Этот инновационный продукт нашей компании позволяет вывести на новый уровень все этапы гистологических исследований – процесс сканирования образцов и получения изображений, безопасное хранение и передачу полученных данных, работу врачей-специалистов и составление заключений.

Внедрение такой системы позволяет полностью избежать ситуаций, когда материалы теряются или ошибочно подменяются. Также Philips участвует в крупных международных проектах, направленных на накопление столь необходимых качественных данных, над аннотацией которых работают врачи с многолетним опытом. В исследовательских лабораториях разрабатываются умные алгоритмы, которые станут помощниками врачей в их ежедневной практике.

Как ИИ в патоморфологии влияет на вероятность ошибки в диагнозе? Каким образом подобные инновации в здравоохранении могут улучшить качество диагностики рака и других заболеваний?

— Целью внедрения ИИ в любую сферу является улучшение качества существующих продуктов и услуг, либо создание принципиально новых решений. Патомормофология и медицина в целом — не исключение. Внедрение ИИ в рабочий процесс отдельно взятого врача облегчит его работу, избавит от рутинных операций, а также уменьшит количество ошибок в постановке диагноза, связанных с недостатком знаний и усталостью.

На глобальном уровне переход к цифровой гистопатологии является важной частью развития медицинских больших данных. За последние пять лет мы увидели взрывной рост применения искусственного интеллекта во многих сферах нашей жизни. Такого же роста мы ожидаем и для применения ИИ в медицине. Но этот развитие ограничивается отсутствием необходимых данных — медицинских записей, снимков, гистопатологических изображений и так далее.

За наращиванием объема данных незамедлительно последуют продукты и решения, которые выведут процесс диагностики и лечения на принципиально новый уровень. Например, с помощью машинного обучения можно будет предсказать оптимальный способ лечения для конкретного пациента, основываясь на гистологических снимках, геномных данных, записей лечащих врачей и результатов исследований тысяч других пациентов. Так мы придем к персональной медицине, которая будет эффективнее и дешевле.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
22 декабря, 15:37
Адель Романова

До сих пор предполагалось, что азот, углерод и другие частицы земного воздуха осели на поверхность Луны в древние времена, когда наша планета еще не могла эффективно удерживать их. По другой версии, их присутствие в лунных образцах — результат банального «загрязнения» в лаборатории. Недавно ученые пришли к неожиданному выводу: на самом деле транспортировка этих частиц между Землей и ее естественным спутником происходит каждый лунный месяц.

23 декабря, 10:51
Игорь Байдов

Среди самых интригующих открытий космического телескопа «‎Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.

24 декабря, 11:00
Evgenia Vavilova

Объединить конфликтующие свойства помогли квазичастицы со специфическим зарядом. Если удастся подтвердить предложенную теорию экспериментом, то перед нами — новый тип квантовых материалов.

23 декабря, 10:51
Игорь Байдов

Среди самых интригующих открытий космического телескопа «‎Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.

19 декабря, 15:22
Андрей Серегин

Экологическое состояние морей, омывающих развитые и развивающиеся страны, — давняя проблема, о которой говорят ученые. Авторы нового исследования выявили в Средиземном море пещеры с рекордным количеством мусора.

19 декабря, 20:02
Evgenia Vavilova

Исследователи доказали, что влияние больших сделок на рынок описывается квадратичной зависимостью. Основой для анализа стали данные Токийской биржи.

8 декабря, 13:09
Александр Березин

С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.

17 декабря, 14:19
Игорь Байдов

На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.

29 ноября, 12:42
Александр Березин

Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно