Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В НИУ ВШЭ ускорили разработку беспроводных систем связи 5G и 6G с помощью ИИ-технологий
В Центре искусственного интеллекта НИУ ВШЭ разработали программное обеспечение для моделирования радиоканала в беспроводной связи 5G и 6G, основанное на использовании трассировки лучей и машинного обучения. Программы позволяют узнать, как радиоволны распространяются между передатчиком и приемником, а также могут преобразовывать данные трассировки лучей в формат последовательности кадров, конфигурировать и обучать нейросеть на их основе с последующим сохранением.
В рамках проекта «Интеллектуальные методы доставки данных в перспективных сетях 2030» в Центре искусственного интеллекта НИУ ВШЭ разработали программу для сбора и обработки данных моделирования трассировки лучей, которая позволяет узнать, как радиоволны распространяются между передатчиком (например, вышкой сотовой связи) и приемником (например, мобильным устройством). Также ученые создали программу для обучения нейросети и ее применения для интерполяции данных моделирования трассировки лучей, чтобы преобразовывать данные трассировки лучей в формат последовательности кадров, конфигурировать и обучать нейросеть на их основе с последующим сохранением.
Евгений Кучерявый, руководитель проекта «Интеллектуальные методы доставки данных в перспективных сетях 2030»: «Программа использует метод моделирования распространения радиоволн, который позволяет отслеживать все возможные пути распространения радиосигнала от передатчика к приемнику. Она анализирует данные о качестве сигнала и других параметрах, чтобы показать, как они изменяются в разных условиях, например при передвижении приемника. Таким образом, мы можем увидеть, как меняется качество связи, когда мы, например, перемещаемся на автомобиле или поезде».
Новый метод моделирования радиоканала в беспроводной связи 5G и 6G, который разрабатывает Центр ИИ, основан на использовании трассировки лучей и машинного обучения. Он позволяет анализировать распространение сигналов и радиоволн через беспроводное пространство, учитывая различные факторы, такие как отражение от стен и препятствий. Это улучшит качество связи между устройствами, поможет предсказать зоны покрытия сети и оптимизировать расположение антенн для эффективной работы связи.
Машинное обучение значительно улучшает развитие сетей 5G и 6G, ускоряя и оптимизируя ключевые процессы. Например, анализируя данные о загрузке и равномерно распределяя трафик между различными узлами, можно обеспечивать высокую производительность сети. Изучая информацию о перемещении пользователей, алгоритмы предсказывают их будущее местоположение и совершенствуют процессы переключения между базовыми станциями. Это помогает обеспечить непрерывную связь и минимизировать задержки. Кроме того, машинное обучение может управлять лучом передачи данных, определять его оптимальное направление для каждого пользователя или устройства, что позволяет оптимизировать качество сигнала и увеличить его пропускную способность.
Владислав Просвиров, стажер-исследователь проекта «Интеллектуальные методы доставки данных в перспективных сетях 2030»: «В рамках проекта мы разрабатываем метод, который поможет увеличить скорость моделирования радиоканала с помощью трассировки лучей. Для достижения этой цели мы используем машинное обучение. Такое моделирование позволяет быстро проводить оценку различных беспроводных систем без необходимости реального развертывания приемников и передатчиков. Наша разработка может быть применима как в прикладных исследованиях различных беспроводных систем 5G и 6G, так и операторами связи».
Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.
Несмотря на отмену попытки «экономичной» ловли первой ступени, шестой испытательный полет Starship был успешным. Корабль — вторая ступень системы впервые продемонстрировала возможность маневра на орбите. Первая ступень после приводнения неожиданно для всех смогла пережить два взрыва, не утратив плавучесть. Среди наблюдавших за испытанием был Дональд Трамп.
Международная команда специалистов во главе с сотрудниками Центра математического моделирования в разработке лекарств Первого МГМУ имени И. М. Сеченова выявила наиболее перспективные направления для исследований в области лечения аутоиммунных заболеваний. Команда первой провела систематический обзор для поиска всех опубликованных в научных работах математических моделей аутоиммунных патологий и выявила недостаток моделей, которые могут значительно ускорить разработку новых лекарств.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Принято считать, что естественный спутник Земли возник в результате ее столкновения с другой планетой, но к этой версии есть вопросы. Теперь ученые предложили рассмотреть сценарий возможного захвата Луны притяжением Земли из пролетавшей мимо двойной системы.
Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.
Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии