Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект научился «видеть» так же, как и человек
Инженеры Калифорнийского университета в Лос-Анджелесе (UCLA) и Стэнфордского университета продемонстрировали компьютерную систему, способную обнаруживать и идентифицировать объекты реального мира, которые она «видит», на основе метода визуального обучения, используемого людьми.
Новая система считается шагом вперед в технологии, называемой «компьютерное зрение», которая позволяет компьютерам считывать и идентифицировать визуальные образы. Это может приблизить нас к созданию общих систем искусственного интеллекта — самообучаемых компьютеров, которые способны рассуждать и принимать самостоятельные решения. Современные системы компьютерного зрения ИИ с каждым днем становятся все более мощными и эффективными, однако до сих пор зависят от конкретной задачи. Это означает, что их способность определять то, что они видят, ограничена степенью их обучения и программирования людьми.
Даже лучшие на сегодня системы компьютерного зрения не могут создать полную картину объекта на основе только определенных его частей, поэтому ее можно обмануть, если продемонстрировать объект в незнакомой роботу обстановке. Инженеры стремятся создать такие компьютерные системы, которые бы не имели этого недостатка, подобно тому, как люди способны узнать собаку, даже если она спряталась за стулом, из-за которого видны только лапы и хвост. С помощью интуиции человек легко поймет, где находится голова собаки, а где — остальная часть ее тела, однако эта способность все еще недоступна большинству систем ИИ.
Современные системы компьютерного зрения не предназначены для самостоятельного обучения, поэтому их программируют путем демонстрации тысяч изображений объектов, которые они должны идентифицировать. Кроме того, компьютеры не могут интуитивно определить, что изображено на фотографии: системы на основе ИИ не составляют внутренний образ знакомых объектов, как это делают люди. Новый метод, описанный в журнале Proceedings of the National Academy of Sciences, рассказывает, как можно решить эти проблемы.
«К счастью, интернет предоставляет две вещи, которые помогают мозговой системе компьютерного зрения обучаться тем же способом, что и люди. Во-первых, это наличие множества изображений и видеороликов, на которых показаны объекты одного и того же типа. Во-вторых, эти объекты видны с разных точек зрения — скрытые, с высоты птичьего полета, с близкого расстояния — и размещены в различных условиях», — утверждает профессор Калифорнийского университета и руководитель исследования Ввани Ройховдхури (Vwani Roychowdhury).
Начиная с младенчества мы узнаем о каком-то предмете, так как видим много его вариаций в различных контекстах. Такое контекстное обучение считается ключевой особенностью нашего мозга: оно помогает нам создавать надежные модели объектов, которые составляют часть интегрированного мировоззрения, где все функционально связано.
Это понимание помогло инженерам добиться результата: они успешно протестировали систему с помощью порядка 9000 картинок, на каждой из которых были изображены люди и другие объекты. Платформа построила детальную модель человеческого тела без внешнего наведения и маркировки изображений. Инженеры провели аналогичные испытания, используя изображения мотоциклов, автомобилей и самолетов.
Во всех случаях их система работала лучше или по крайней мере так же, как традиционные системы компьютерного зрения с многолетним обучением, что вселяет надежду на дальнейший прогресс.
Пролетевший через Солнечную систему в 2017 году астероид Оумуамуа произвел неизгладимое впечатление в том числе своей беспрецедентно вытянутой формой. Астрономы попытались рассчитать, как он мог стать таким и почему в Солнечной системе мы не наблюдаем ничего подобного.
Исследователи МИЭМ НИУ ВШЭ впервые в России показали эффективную работу беспроводного канала связи 6G на частотах субтерагерцового диапазона. Устройство передает данные со скоростью 12 гигабит в секунду и сохраняет стабильность сигнала, автоматически переключаясь при блокировке. Показатели соответствуют международным стандартам 6G.
Нейтрино крайне редко взаимодействуют с веществом: мириады этих почти безмассовых частиц пронзают Землю, оставаясь незамеченными. Для наблюдения за ними строят детекторы гигантского объема под землей или водой, способные уловить единичные события в потоках космических частиц. Один из таких инструментов расположен в Средиземном море. Это KM3NeT — нейтринный детектор черенковского типа объемом один кубический километр воды. Коллаборация работающих на нем ученых сообщила о регистрации сигнала от астрофизического нейтрино рекордной энергии.
Европейские палеонтологи изучили исключительно сохранившийся скелет плезиозавра из юрского периода, обнаруженный в Германии еще в 1940 году. Тогда ископаемую рептилию спрятали от разрушений войны в музей, а через 80 лет выяснилось, что на теле древнего животного остались мягкие ткани — кожа с уцелевшими клеточными ядрами и чешуйки. Новые данные дополняют представление о внешнем виде плезиозавров, живших больше 180 миллионов лет назад.
Астрономы обнаружили, что почти треть всех наблюдаемых галактик во Вселенной объединены в пять самых широкомасштабных структур — галактические сверхскопления. На составленной учеными трехмерной карте одно особенно выделяется своими рекордными размерами: простирается на миллиард с лишним световых лет.
Пролетевший через Солнечную систему в 2017 году астероид Оумуамуа произвел неизгладимое впечатление в том числе своей беспрецедентно вытянутой формой. Астрономы попытались рассчитать, как он мог стать таким и почему в Солнечной системе мы не наблюдаем ничего подобного.
В 2022-2025 годах страны Западной Европы попытались отказаться от природного газа из России. Автор новой работы показал, что получившиеся при этом результаты были во многом противоположны целям.
Европейские палеонтологи изучили исключительно сохранившийся скелет плезиозавра из юрского периода, обнаруженный в Германии еще в 1940 году. Тогда ископаемую рептилию спрятали от разрушений войны в музей, а через 80 лет выяснилось, что на теле древнего животного остались мягкие ткани — кожа с уцелевшими клеточными ядрами и чешуйки. Новые данные дополняют представление о внешнем виде плезиозавров, живших больше 180 миллионов лет назад.
По распространению сейсмических волн в недрах Земли геологи словно «сканируют» планету и обнаруживают все больше интересных особенностей ее внутреннего строения. Недавно очередное такое исследование заставило ученых особенно внимательно рассмотреть то, что скрывается под Тихоокеанской литосферной плитой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии