Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект научился «видеть» так же, как и человек
Инженеры Калифорнийского университета в Лос-Анджелесе (UCLA) и Стэнфордского университета продемонстрировали компьютерную систему, способную обнаруживать и идентифицировать объекты реального мира, которые она «видит», на основе метода визуального обучения, используемого людьми.
Новая система считается шагом вперед в технологии, называемой «компьютерное зрение», которая позволяет компьютерам считывать и идентифицировать визуальные образы. Это может приблизить нас к созданию общих систем искусственного интеллекта — самообучаемых компьютеров, которые способны рассуждать и принимать самостоятельные решения. Современные системы компьютерного зрения ИИ с каждым днем становятся все более мощными и эффективными, однако до сих пор зависят от конкретной задачи. Это означает, что их способность определять то, что они видят, ограничена степенью их обучения и программирования людьми.
Даже лучшие на сегодня системы компьютерного зрения не могут создать полную картину объекта на основе только определенных его частей, поэтому ее можно обмануть, если продемонстрировать объект в незнакомой роботу обстановке. Инженеры стремятся создать такие компьютерные системы, которые бы не имели этого недостатка, подобно тому, как люди способны узнать собаку, даже если она спряталась за стулом, из-за которого видны только лапы и хвост. С помощью интуиции человек легко поймет, где находится голова собаки, а где — остальная часть ее тела, однако эта способность все еще недоступна большинству систем ИИ.
Современные системы компьютерного зрения не предназначены для самостоятельного обучения, поэтому их программируют путем демонстрации тысяч изображений объектов, которые они должны идентифицировать. Кроме того, компьютеры не могут интуитивно определить, что изображено на фотографии: системы на основе ИИ не составляют внутренний образ знакомых объектов, как это делают люди. Новый метод, описанный в журнале Proceedings of the National Academy of Sciences, рассказывает, как можно решить эти проблемы.
«К счастью, интернет предоставляет две вещи, которые помогают мозговой системе компьютерного зрения обучаться тем же способом, что и люди. Во-первых, это наличие множества изображений и видеороликов, на которых показаны объекты одного и того же типа. Во-вторых, эти объекты видны с разных точек зрения — скрытые, с высоты птичьего полета, с близкого расстояния — и размещены в различных условиях», — утверждает профессор Калифорнийского университета и руководитель исследования Ввани Ройховдхури (Vwani Roychowdhury).
Начиная с младенчества мы узнаем о каком-то предмете, так как видим много его вариаций в различных контекстах. Такое контекстное обучение считается ключевой особенностью нашего мозга: оно помогает нам создавать надежные модели объектов, которые составляют часть интегрированного мировоззрения, где все функционально связано.
Это понимание помогло инженерам добиться результата: они успешно протестировали систему с помощью порядка 9000 картинок, на каждой из которых были изображены люди и другие объекты. Платформа построила детальную модель человеческого тела без внешнего наведения и маркировки изображений. Инженеры провели аналогичные испытания, используя изображения мотоциклов, автомобилей и самолетов.
Во всех случаях их система работала лучше или по крайней мере так же, как традиционные системы компьютерного зрения с многолетним обучением, что вселяет надежду на дальнейший прогресс.
Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.
К неожиданным прорывам в науке могут привести даже пустяковые вещи вроде чаинок в чашке. Парадокс чайного листа только на первый взгляд кажется неважным, но в свое время им заинтересовался Альберт Эйнштейн. Решение парадокса ученый представил на одной из конференций, чем вызвал ажиотаж у академической публики. Докладу немецкого физика уже почти 100 лет, а самому парадоксу — гораздо больше, но исследователи во всем мире продолжают использовать его в своих работах. Например, недавно китайские ученые применили его для изучения концентрации веществ в наножидкостях.
Измеряя активность медиальной части префронтальной коры участников эксперимента, ученые выяснили, что для одиночек почти не существовало разницы между настоящими друзьями и любимыми вымышленными героями.
Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.
Ученые применили современные методы, такие как микрокомпьютерная томография, получили сотни рентгеновских изображений и создали 3D-модель. Все для того, чтобы обнаружить следы опухоли во внутренней части черепа человека, жившего в середине IV века нашей эры. Это самый ранний случай менингиомы на Пиренейском полуострове — из тех, что известны науке.
К неожиданным прорывам в науке могут привести даже пустяковые вещи вроде чаинок в чашке. Парадокс чайного листа только на первый взгляд кажется неважным, но в свое время им заинтересовался Альберт Эйнштейн. Решение парадокса ученый представил на одной из конференций, чем вызвал ажиотаж у академической публики. Докладу немецкого физика уже почти 100 лет, а самому парадоксу — гораздо больше, но исследователи во всем мире продолжают использовать его в своих работах. Например, недавно китайские ученые применили его для изучения концентрации веществ в наножидкостях.
Космический телескоп «Гайя» позволил оценить скорость движения рекордного количества звезд в Млечном Пути, и новые данные оказались крайне неожиданными. Дело не только в том, что его масса упала во много раз: стало ясно, что сама структура Галактики не такая, как думали раньше.
Американский поэт и литературный критик Адам Кирш в эссе, опубликованном в The Guardian, рассуждает о том, как новые представления о возможностях животного разума меняют нас самих.
Исследователи из Швеции и Великобритания узнали, что «правило деревьев» да Винчи, который считал, что толщина всех веток дерева на любой его высоте, сложенная вместе, равна толщине ствола, ошибочно на микроуровне.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии