Хотите получать важные новости науки?
Подписаться
  • Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
30.10.2020
Василий Парфенов
7 831

ИИ научился легко решать сложнейшие уравнения, которые описывают устройство Вселенной

Дифференциальные уравнения в частных производных встречаются в самых разных аспектах физико-математического моделирования. Они позволяют рассчитывать состояния весьма сложных систем, но их решение всегда было ресурсоемкой задачей. Благодаря специально созданной нейросети этот процесс значительно ускорился и мощности суперкомпьютеров можно будет перенаправить на другие важные задачи.

Благодаря специально созданной нейросети решение дифференциальные уравнения в частных производных значительно ускорилось
©Science Photo Library via AP Images / Автор: Михаил Григорьев

Большинство студентов технических специальностей встречают уравнения математической физики (УМФ), или дифференциальные уравнения в частных производных, лишь однажды. Пройдя их во время обучения, об этом сложном, но мощном инструменте почти всегда забывают. И лишь некоторые инженеры используют их регулярно. Речь идет, например, о моделировании воздушных потоков в аэродинамике, описании движения тектонических плит, расчете положения планет или метеорологии.

Как правило, для решения подобных уравнений применяют мощные вычислительные комплексы — суперкомпьютеры или сети распределенных вычислений. Для многих ученых, работающих в не самых богатых на финансирование отраслях, такие расчеты всегда были головной болью. Понимая важность появления нового инструмента для выполнения подобных задач, американские математики и программисты обратились к технологиям искусственного интеллекта.

Коллектив ученых из Калифорнийского технологического института (Caltech) и Университета Пердью разработал высокоэффективный нейросетевой алгоритм для работы с УМФ. При его использовании удалось достичь огромного прироста скорости решения уравнений — в некоторых случаях на несколько порядков. Например, на матрице 256х256 их Нейронный оператор Фурье (Fourier neural operator, FNO) выдал результат за 0,005 секунды при решении уравнений Навье — Стокса. Наиболее распространенный алгоритм, используемый ранее, рассчитывал те же условия за 2,2 секунды.

Благодаря специально созданной нейросети решение дифференциальные уравнения в частных производных значительно ускорилось
(a) — схема работы алгоритма (b) — сравнение результатов прямых наблюдений (верхний ряд) с предсказаниями нейросети (нижний ряд) Алгоритм был «натренирован» с помощью набора данных с матрицей 64х64Х20, расчеты производились по уравнениям Навье — Стокса с числом Рейнольдса 10000 на матрице 256х256х80 ©Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar via arXiv.org

Эти дифференциальные уравнения встречаются повсеместно — точнее, с их помощью можно описать практически любую динамическую систему. Появление доступного и эффективного метода их решения может существенно продвинуть вперед самые разные области науки. А уж применимость такого «искусственного интеллекта» в инженерных разработках точно не заставит себя ждать. Полное описание своей работы американские ученые опубликовали на портале arXiv.

Нельзя сказать, что создатели FNO первыми догадались решать дифференциальные уравнения в частных производных с помощью нейросетей и машинного обучения. Нет, так делали и раньше. Однако существующие алгоритмы приходилось обучать заново на каждый новый набор вычислений — даже при изменении свойств похожих жидкостей. Разработка ученых из Калтеха и Пердью позволяет выполнить «тренировку» лишь однажды и обсчитывать самые разные модели. Секрет эффективности FNO гениален и одновременно прост.

Основа работы любой нейросети — аппроксимация функции, ее приближение. Искусственный интеллект оперирует в своих вычислениях не точными значениями, а диапазоном величин, который позволяет принять решение или выдать результат, не прибегая к ресурсоемким и сложным уточнениям. Иными словами, нейросети во время обучения вырабатывают упрощенные формулы, результаты которых достаточно точны, чтобы применяться на практике.

Обычно работающие с графиками функций нейросети оперируют значениями в евклидовом пространстве. Для того чтобы упростить задачу, авторы FNO решили не переводить волновые функции в привычные графики, а «научить» алгоритм работать напрямую с преобразованиями Фурье. Это позволило не только прибавить скорость вычислений, но и снизить количество ошибок: их теперь на 30% меньше, чем в прежних алгоритмах.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
mostly harmless Есть телега: https://t.me/tempest_exults
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
7 часов назад
Александр Березин

Нарастающий в последние десятки лет пластиковый кризис многие годы пытались решить наращиванием вторичной переработки пластика. Ученые выяснили, что такие переработанные полимеры негативно повлияли на развитие подопытных животных.

4 часа назад
Игорь Байдов

В последнее время в некоторых развитых странах наблюдается тенденция к тому, что женщины предпочитают рожать первого ребенка в возрасте 40 лет и старше. Но счастье материнства, как показали авторы новой научной работы, могут омрачить тревожные последствия. Исследователи из Швеции изучили историю нескольких сотен тысяч родов и рассказали о рисках для здоровья малышей, появившихся на свет у женщин в позднем возрасте.

6 часов назад
Николай Цыгикало

Боеголовки, размещенные на орбите, наносят удар быстро и по любой точке Земли — широко расхожая и в корне неверная картина. О планах космического базирования боеголовок пишут СМИ и спорят в интернете. Однако их размещение на орбите не дает боевых преимуществ: напротив, оно намного проигрывает МБР в эффективности. Разберемся, почему это так.

20 июня
Александр Березин

Выбросы углекислого газа, которые возникнут при сжигании доказанных запасов ископаемого топлива всего 200 компаний, будут настолько велики, что для их компенсации нужны новые леса в десятки миллионов квадратных километров. По крайней мере, так считают авторы новой научной работы. Однако исследование их предшественников ставит эти выводы под серьезное сомнение.

7 часов назад
Александр Березин

Нарастающий в последние десятки лет пластиковый кризис многие годы пытались решить наращиванием вторичной переработки пластика. Ученые выяснили, что такие переработанные полимеры негативно повлияли на развитие подопытных животных.

Вчера, 16:10
Александр Березин

Исследователи из Новой Зеландии посчитали угрозу для озонового слоя при достижении землянами хотя бы пары тысяч ракетных запусков в год. По их расчетам, он должен начать существенно деградировать. Интересно, что Илон Маск планирует несколько тысяч запусков ежегодно, то есть даже больше. Несмотря на это, некоторые проблемы в работе делают ее выводы далеко не бесспорными.

17 июня
Адель Романенкова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

5 июня
Александр Березин

Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.

19 июня
ЮФУ

В ЮФУ придумали новый остроумный способ тестировать ИИ на способность работать в реальных ситуациях использования русского языка. Исследователи искусственного интеллекта из МИИ ИМ ЮФУ предлагают использовать интеллектуальные языковые игры, как пример — заставлять ИИ отвечать на вопросы из архива телевикторины «Что? Где? Когда?» и «Своей игры». Инициативу прокомментировал опытный игрок.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно