• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
30.10.2020, 18:05
Василий Парфенов
7,8 тыс

ИИ научился легко решать сложнейшие уравнения, которые описывают устройство Вселенной

Дифференциальные уравнения в частных производных встречаются в самых разных аспектах физико-математического моделирования. Они позволяют рассчитывать состояния весьма сложных систем, но их решение всегда было ресурсоемкой задачей. Благодаря специально созданной нейросети этот процесс значительно ускорился и мощности суперкомпьютеров можно будет перенаправить на другие важные задачи.

Благодаря специально созданной нейросети решение дифференциальные уравнения в частных производных значительно ускорилось
©Science Photo Library via AP Images / Автор: Михаил Григорьев

Большинство студентов технических специальностей встречают уравнения математической физики (УМФ), или дифференциальные уравнения в частных производных, лишь однажды. Пройдя их во время обучения, об этом сложном, но мощном инструменте почти всегда забывают. И лишь некоторые инженеры используют их регулярно. Речь идет, например, о моделировании воздушных потоков в аэродинамике, описании движения тектонических плит, расчете положения планет или метеорологии.

Как правило, для решения подобных уравнений применяют мощные вычислительные комплексы — суперкомпьютеры или сети распределенных вычислений. Для многих ученых, работающих в не самых богатых на финансирование отраслях, такие расчеты всегда были головной болью. Понимая важность появления нового инструмента для выполнения подобных задач, американские математики и программисты обратились к технологиям искусственного интеллекта.

Коллектив ученых из Калифорнийского технологического института (Caltech) и Университета Пердью разработал высокоэффективный нейросетевой алгоритм для работы с УМФ. При его использовании удалось достичь огромного прироста скорости решения уравнений — в некоторых случаях на несколько порядков. Например, на матрице 256х256 их Нейронный оператор Фурье (Fourier neural operator, FNO) выдал результат за 0,005 секунды при решении уравнений Навье — Стокса. Наиболее распространенный алгоритм, используемый ранее, рассчитывал те же условия за 2,2 секунды.

Благодаря специально созданной нейросети решение дифференциальные уравнения в частных производных значительно ускорилось
(a) — схема работы алгоритма (b) — сравнение результатов прямых наблюдений (верхний ряд) с предсказаниями нейросети (нижний ряд) Алгоритм был «натренирован» с помощью набора данных с матрицей 64х64Х20, расчеты производились по уравнениям Навье — Стокса с числом Рейнольдса 10000 на матрице 256х256х80 ©Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar via arXiv.org

Эти дифференциальные уравнения встречаются повсеместно — точнее, с их помощью можно описать практически любую динамическую систему. Появление доступного и эффективного метода их решения может существенно продвинуть вперед самые разные области науки. А уж применимость такого «искусственного интеллекта» в инженерных разработках точно не заставит себя ждать. Полное описание своей работы американские ученые опубликовали на портале arXiv.

Нельзя сказать, что создатели FNO первыми догадались решать дифференциальные уравнения в частных производных с помощью нейросетей и машинного обучения. Нет, так делали и раньше. Однако существующие алгоритмы приходилось обучать заново на каждый новый набор вычислений — даже при изменении свойств похожих жидкостей. Разработка ученых из Калтеха и Пердью позволяет выполнить «тренировку» лишь однажды и обсчитывать самые разные модели. Секрет эффективности FNO гениален и одновременно прост.

Основа работы любой нейросети — аппроксимация функции, ее приближение. Искусственный интеллект оперирует в своих вычислениях не точными значениями, а диапазоном величин, который позволяет принять решение или выдать результат, не прибегая к ресурсоемким и сложным уточнениям. Иными словами, нейросети во время обучения вырабатывают упрощенные формулы, результаты которых достаточно точны, чтобы применяться на практике.

Обычно работающие с графиками функций нейросети оперируют значениями в евклидовом пространстве. Для того чтобы упростить задачу, авторы FNO решили не переводить волновые функции в привычные графики, а «научить» алгоритм работать напрямую с преобразованиями Фурье. Это позволило не только прибавить скорость вычислений, но и снизить количество ошибок: их теперь на 30% меньше, чем в прежних алгоритмах.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
mostly harmless Есть телега: https://t.me/tempest_exults
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
23 января, 15:04
Максим Абдулаев

Австралийские геологи нашли новые доказательства того, что мегалиты попали на равнину Солсбери благодаря сложной логистике древних строителей. Изучив минеральный состав почвы вокруг монумента, исследователи исключили возможность того, что огромные глыбы принесло туда движение ледников.

23 января, 08:27
Полина Меньшова

В основе современной грамматики лежит теория, согласно которой в сознании человека язык «хранится» в виде иерархических структур — групп из двух слов, где одна составляющая зависит от другой, но вместе они образуют единое целое с точки зрения смысла. Однако лингвисты из Дании продемонстрировали, что устройство языка может быть проще: многие значимые группы слов представляют собой линейные последовательности, а не иерархии.

21 января, 08:27
Полина Меньшова

В обжаренных зернах кофе обнаружили соединения, которые способны регулировать расщепление углеводов в организме. По эффективности эти вещества превзошли распространенное лекарство для лечения сахарного диабета второго типа.

20 января, 13:40
Александр Березин

Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.

18 января, 11:45
Игорь Байдов

Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.

19 января, 07:55
Игорь Байдов

Растительная диета давно стала золотым стандартом для тех, кто мечтает о долгой и здоровой жизни. Но китайские ученые внесли серьезные коррективы в этот постулат. Они обнаружили, что большинство местных долгожителей, перешагнувших столетний рубеж, регулярно употребляют в пищу мясо. Особенно заметна эта связь у одной специфической группы пожилых людей, что заставляет по-новому взглянуть на диетические рекомендации для самых старших поколений.

12 января, 15:39
Александр Березин

От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.

20 января, 13:40
Александр Березин

Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.

2 января, 12:27
Адель Романова

Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно