Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
ИИ научился легко решать сложнейшие уравнения, которые описывают устройство Вселенной
Дифференциальные уравнения в частных производных встречаются в самых разных аспектах физико-математического моделирования. Они позволяют рассчитывать состояния весьма сложных систем, но их решение всегда было ресурсоемкой задачей. Благодаря специально созданной нейросети этот процесс значительно ускорился и мощности суперкомпьютеров можно будет перенаправить на другие важные задачи.
Большинство студентов технических специальностей встречают уравнения математической физики (УМФ), или дифференциальные уравнения в частных производных, лишь однажды. Пройдя их во время обучения, об этом сложном, но мощном инструменте почти всегда забывают. И лишь некоторые инженеры используют их регулярно. Речь идет, например, о моделировании воздушных потоков в аэродинамике, описании движения тектонических плит, расчете положения планет или метеорологии.
Как правило, для решения подобных уравнений применяют мощные вычислительные комплексы — суперкомпьютеры или сети распределенных вычислений. Для многих ученых, работающих в не самых богатых на финансирование отраслях, такие расчеты всегда были головной болью. Понимая важность появления нового инструмента для выполнения подобных задач, американские математики и программисты обратились к технологиям искусственного интеллекта.
Коллектив ученых из Калифорнийского технологического института (Caltech) и Университета Пердью разработал высокоэффективный нейросетевой алгоритм для работы с УМФ. При его использовании удалось достичь огромного прироста скорости решения уравнений — в некоторых случаях на несколько порядков. Например, на матрице 256х256 их Нейронный оператор Фурье (Fourier neural operator, FNO) выдал результат за 0,005 секунды при решении уравнений Навье — Стокса. Наиболее распространенный алгоритм, используемый ранее, рассчитывал те же условия за 2,2 секунды.
Эти дифференциальные уравнения встречаются повсеместно — точнее, с их помощью можно описать практически любую динамическую систему. Появление доступного и эффективного метода их решения может существенно продвинуть вперед самые разные области науки. А уж применимость такого «искусственного интеллекта» в инженерных разработках точно не заставит себя ждать. Полное описание своей работы американские ученые опубликовали на портале arXiv.
Нельзя сказать, что создатели FNO первыми догадались решать дифференциальные уравнения в частных производных с помощью нейросетей и машинного обучения. Нет, так делали и раньше. Однако существующие алгоритмы приходилось обучать заново на каждый новый набор вычислений — даже при изменении свойств похожих жидкостей. Разработка ученых из Калтеха и Пердью позволяет выполнить «тренировку» лишь однажды и обсчитывать самые разные модели. Секрет эффективности FNO гениален и одновременно прост.
Основа работы любой нейросети — аппроксимация функции, ее приближение. Искусственный интеллект оперирует в своих вычислениях не точными значениями, а диапазоном величин, который позволяет принять решение или выдать результат, не прибегая к ресурсоемким и сложным уточнениям. Иными словами, нейросети во время обучения вырабатывают упрощенные формулы, результаты которых достаточно точны, чтобы применяться на практике.
Обычно работающие с графиками функций нейросети оперируют значениями в евклидовом пространстве. Для того чтобы упростить задачу, авторы FNO решили не переводить волновые функции в привычные графики, а «научить» алгоритм работать напрямую с преобразованиями Фурье. Это позволило не только прибавить скорость вычислений, но и снизить количество ошибок: их теперь на 30% меньше, чем в прежних алгоритмах.
Венерины мухоловки регистрируют до пяти стимуляций чувствительных волосков, чтобы захлопнуть свою ловушку и начать переваривание. Но уникальный мутант Dyscalculia не может «считать» даже до двух. Ученые показали, что это связано с нарушением восприятия ионов кальция.
Сегодня популяции многих видов пчел в упадке, и британские исследователи предложили еще один способ спасти этих насекомых: превратить часть кирпичей в стенах домов в «мини-ульи».
Игру 2013 года и выходящий с января 2023 года сериал по ней часто принимают за научную фантастику. То есть произведение, основанное на предположениях, не противоречащих науке. Однако вряд ли дело обстоит таким образом. Проблема в том, что создатели мира The Last of Us слишком некритично подошли как к научному фундаменту, на котором основан их мир постапокалипсиса, так и к тому, что думает наука о самой реальности «постапов». Naked Science пробует разобраться в деталях.
Венерины мухоловки регистрируют до пяти стимуляций чувствительных волосков, чтобы захлопнуть свою ловушку и начать переваривание. Но уникальный мутант Dyscalculia не может «считать» даже до двух. Ученые показали, что это связано с нарушением восприятия ионов кальция.
Сегодня популяции многих видов пчел в упадке, и британские исследователи предложили еще один способ спасти этих насекомых: превратить часть кирпичей в стенах домов в «мини-ульи».
Игру 2013 года и выходящий с января 2023 года сериал по ней часто принимают за научную фантастику. То есть произведение, основанное на предположениях, не противоречащих науке. Однако вряд ли дело обстоит таким образом. Проблема в том, что создатели мира The Last of Us слишком некритично подошли как к научному фундаменту, на котором основан их мир постапокалипсиса, так и к тому, что думает наука о самой реальности «постапов». Naked Science пробует разобраться в деталях.
Исследователи, изучающие систему обороны Великой стены, обнаружили следы более 130 секретных сквозных проходов и полагают, что это только начало.
Пока фанаты SpaceX увлеченно следят за достижениями компании, астрономы грустно наблюдают, как их работа становится сложнее с каждым запуском спутников Starlink. Прогресс не проходит без жертв. Поэтому различные научные ассоциации ищут способы снизить негативное влияние множества новых рукотворных объектов в околоземном пространстве на качество данных, получаемых телескопами. Некоторые решения со стороны выглядят экстремальными — например, теперь лазеры для корректировки адаптивной оптики можно не выключать, если в поле зрения есть спутник Starlink. А это десятки ватт излучения!
Биологи показали, что нейронные сети гиппокампа, ответственные за пространственное восприятие, изменяются не линейным образом, а в соответствии с гиперболической геометрией. То есть мозг представляет пространство в форме расширяющихся песочных часов. Результаты исследования могут иметь значение для лучшего понимания различных нейродегенеративных расстройств.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии