• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
30.10.2020
Василий Парфенов
7 574

ИИ научился легко решать сложнейшие уравнения, которые описывают устройство Вселенной

Дифференциальные уравнения в частных производных встречаются в самых разных аспектах физико-математического моделирования. Они позволяют рассчитывать состояния весьма сложных систем, но их решение всегда было ресурсоемкой задачей. Благодаря специально созданной нейросети этот процесс значительно ускорился и мощности суперкомпьютеров можно будет перенаправить на другие важные задачи.

Благодаря специально созданной нейросети решение дифференциальные уравнения в частных производных значительно ускорилось
©Science Photo Library via AP Images

Большинство студентов технических специальностей встречают уравнения математической физики (УМФ), или дифференциальные уравнения в частных производных, лишь однажды. Пройдя их во время обучения, об этом сложном, но мощном инструменте почти всегда забывают. И лишь некоторые инженеры используют их регулярно. Речь идет, например, о моделировании воздушных потоков в аэродинамике, описании движения тектонических плит, расчете положения планет или метеорологии.

Как правило, для решения подобных уравнений применяют мощные вычислительные комплексы — суперкомпьютеры или сети распределенных вычислений. Для многих ученых, работающих в не самых богатых на финансирование отраслях, такие расчеты всегда были головной болью. Понимая важность появления нового инструмента для выполнения подобных задач, американские математики и программисты обратились к технологиям искусственного интеллекта.

Коллектив ученых из Калифорнийского технологического института (Caltech) и Университета Пердью разработал высокоэффективный нейросетевой алгоритм для работы с УМФ. При его использовании удалось достичь огромного прироста скорости решения уравнений — в некоторых случаях на несколько порядков. Например, на матрице 256х256 их Нейронный оператор Фурье (Fourier neural operator, FNO) выдал результат за 0,005 секунды при решении уравнений Навье — Стокса. Наиболее распространенный алгоритм, используемый ранее, рассчитывал те же условия за 2,2 секунды.

Благодаря специально созданной нейросети решение дифференциальные уравнения в частных производных значительно ускорилось
(a) — схема работы алгоритма (b) — сравнение результатов прямых наблюдений (верхний ряд) с предсказаниями нейросети (нижний ряд) Алгоритм был «натренирован» с помощью набора данных с матрицей 64х64Х20, расчеты производились по уравнениям Навье — Стокса с числом Рейнольдса 10000 на матрице 256х256х80 ©Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar via arXiv.org

Эти дифференциальные уравнения встречаются повсеместно — точнее, с их помощью можно описать практически любую динамическую систему. Появление доступного и эффективного метода их решения может существенно продвинуть вперед самые разные области науки. А уж применимость такого «искусственного интеллекта» в инженерных разработках точно не заставит себя ждать. Полное описание своей работы американские ученые опубликовали на портале arXiv.

Нельзя сказать, что создатели FNO первыми догадались решать дифференциальные уравнения в частных производных с помощью нейросетей и машинного обучения. Нет, так делали и раньше. Однако существующие алгоритмы приходилось обучать заново на каждый новый набор вычислений — даже при изменении свойств похожих жидкостей. Разработка ученых из Калтеха и Пердью позволяет выполнить «тренировку» лишь однажды и обсчитывать самые разные модели. Секрет эффективности FNO гениален и одновременно прост.

Основа работы любой нейросети — аппроксимация функции, ее приближение. Искусственный интеллект оперирует в своих вычислениях не точными значениями, а диапазоном величин, который позволяет принять решение или выдать результат, не прибегая к ресурсоемким и сложным уточнениям. Иными словами, нейросети во время обучения вырабатывают упрощенные формулы, результаты которых достаточно точны, чтобы применяться на практике.

Обычно работающие с графиками функций нейросети оперируют значениями в евклидовом пространстве. Для того чтобы упростить задачу, авторы FNO решили не переводить волновые функции в привычные графики, а «научить» алгоритм работать напрямую с преобразованиями Фурье. Это позволило не только прибавить скорость вычислений, но и снизить количество ошибок: их теперь на 30% меньше, чем в прежних алгоритмах.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Вчера, 12:19
РНФ

Ученые показали, что экстремальный подъем уровня Каспийского моря на десятки метров, произошедший 18-13 тысяч лет назад и получивший название «Великая Хвалынская трансгрессия», мог быть вызван, вопреки существующим гипотезам, не таянием ледника, а естественными изменениями палеоклимата. Оказалось, что из-за холодного климата того периода обширные территории, с которых собирали воду впадающие в Каспий реки, были покрыты многолетней мерзлотой. В результате массы дождевых и талых вод почти не впитывались в мерзлые грунты и стекали в море, испарение с поверхности которого было небольшим. Все эти факторы привели к повышению уровня Каспия и увеличению площади моря более чем вдвое по сравнению с современным. Полученные данные помогут уточнить представления о масштабе колебаний уровня Каспийского моря при изменении климата.

Позавчера, 17:08
Ольга Иванова

Канадские исследователи изучили поведение приматов в естественной среде обитания и пришли к выводу, что те из них, кто имеет врожденные аномалии или покалечен в процессе жизни, вполне неплохо адаптируются к своим недостаткам. Они не только выживают, но и размножаются. Более того, им активно помогают сородичи.

Вчера, 14:56
Илья

Команда ученых, работавшая вместе со съемочной группой National Geographic в отдаленных районах Амазонки, обнаружила ранее не задокументированный вид гигантской анаконды.

20 февраля
Полина

В Российской академии наук завершили первый Большой словарь ударений, его издадут к концу года. Лингвисты собрали наиболее современные нормы произношения привычных слов и зафиксировали ударение для лексики, которая появилась в русском языке недавно.

Вчера, 12:19
РНФ

Ученые показали, что экстремальный подъем уровня Каспийского моря на десятки метров, произошедший 18-13 тысяч лет назад и получивший название «Великая Хвалынская трансгрессия», мог быть вызван, вопреки существующим гипотезам, не таянием ледника, а естественными изменениями палеоклимата. Оказалось, что из-за холодного климата того периода обширные территории, с которых собирали воду впадающие в Каспий реки, были покрыты многолетней мерзлотой. В результате массы дождевых и талых вод почти не впитывались в мерзлые грунты и стекали в море, испарение с поверхности которого было небольшим. Все эти факторы привели к повышению уровня Каспия и увеличению площади моря более чем вдвое по сравнению с современным. Полученные данные помогут уточнить представления о масштабе колебаний уровня Каспийского моря при изменении климата.

19 февраля
Полина

Подростки чаще пробуют писать музыку, если у них есть возможность получать соответствующее дополнительное образование, а также когда они чувствуют поддержку и преемственность. При этом есть пять типовых траекторий, которые приводят к собственному творчеству.

20 февраля
Полина

В Российской академии наук завершили первый Большой словарь ударений, его издадут к концу года. Лингвисты собрали наиболее современные нормы произношения привычных слов и зафиксировали ударение для лексики, которая появилась в русском языке недавно.

1 февраля
Андрей

Канадские исследователи изучили состав пород, вышедших на поверхность при появлении первых континентов. По итогам анализа выяснилось, что новая земная кора возникла не в результате движения тектонических плит, а из-за процессов в океанических плато молодой Земли.

15 февраля
Дарья Губина

Титан — самый органически богатый спутник с глобальным океаном в Солнечной системе. И все же, сопоставив строение его поверхности с интенсивностью падения метеоритов, ученые пришли к выводу, что в океане спутника Сатурна вряд ли хватает элементов для жизни.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: