Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Созданы нейросети для обнаружения сгенерированных вставок в текстах
Команда исследователей с участием Александра Ширнина из НИУ ВШЭ создала две модели для обнаружения в научных текстах частей, сгенерированных искусственным интеллектом. В системе AIpom соединены два типа моделей — декодер и энкодер, что позволяет ей эффективнее находить сгенерированные вставки. Система Papilusion подходит для распознания исправлений с помощью синонимов и кратких пересказов, сгенерированных нейросетью, в работе она использует модели одного типа — энкодеры. В перспективе подобные модели помогут в проверке оригинальности и достоверности научных публикаций.
Статьи о системах Papilusion и AIpom опубликованы в цифровом архиве ACL Anthology. Чем популярнее становятся языковые модели, такие как ChatGPT или GigaChat, и чем больше их используют, тем сложнее отличить оригинальный текст, написанный человеком, от сгенерированного. Научные публикации и выпускные работы уже пишут с помощью искусственного интеллекта. Поэтому важно разрабатывать инструменты, которые помогут выявлять в текстах ИИ-вставки. Команда исследователей с участием НИУ ВШЭ предложила свои решения этой задачи на международных научных соревнованиях SemEval 2024 и DAGPap24.
Модель AIpom использовали для определения границ между оригинальными и сгенерированными фрагментами в научных статьях. В каждой работе соотношение машинного и авторского текста было разным. Для обучения моделей организаторы предоставляли тексты на одну тематику, но на этапе проверки темы менялись, что осложняло задачу.
«Модели неплохо справляются со знакомыми темами, но если дать новую тематику, то результат становится хуже, — считает один из авторов статьи, стажер-исследователь Научно-учебной лаборатории моделей и методов вычислительной прагматики факультета компьютерных наук НИУ ВШЭ Александр Ширнин. — Это как студент, который, научившись решать один тип задач, не сможет так же легко и правильно решить задачу на незнакомую тему или из другого предмета».
Для повышения эффективности системы исследователи решили комбинировать две модели — декодер и энкодер. На первом этапе использовался декодер — нейросеть, на вход которой подавали инструкцию плюс исходный текст, а на выходе получали фрагмент текста, предположительно сгенерированный ИИ. Затем в оригинальном тексте с помощью метки <BREAK> выделялся участок, где, по прогнозу модели, начинался сгенерированный фрагмент. Энкодер работал с текстом, размеченным на первом этапе, и уточнял предсказания декодера. Для этого он классифицировал каждый токен — минимальную единицу текста в виде слова или части слова — и указывал, написан он человеком или ИИ. Такой подход позволил улучшить точность по сравнению с системами, где применялся только один тип моделей: AIpom заняла 2-е место на научном соревновании SemEval-2024.
Модель Papilusion также отличала написанный текст от сгенерированного. С ее помощью участки текста разделяли на четыре категории: написанный человеком, исправленный с помощью синонимов, сгенерированный моделью и кратко пересказанный. Задача была правильно определить каждую из категорий. Количество категорий и длина вставок в текстах различались.
В данном случае разработчики использовали три модели, но уже одного типа — энкодеры. Их обучали предсказывать одну из четырех категорий для каждого токена из текста, все модели обучали независимо друг от друга. Когда модель ошибалась, ее штрафовали и дообучали, при этом замораживая нижние слои модели.
«В каждой модели в зависимости от архитектуры предусмотрено разное количество слоев. Когда мы обучаем модель, можно не трогать, например, первые десять слоев и менять числа только в двух последних. Так делают, чтобы при обучении не потерять часть важных данных, заложенных в первых слоях, — объясняет Александр Ширнин. — Можно сравнить это со спортсменом, который ошибается в движении рукой. Мы должны объяснить ему только это, а не обнулить его знания и обучать заново, потому что тогда он может разучиться правильно двигаться в целом. Здесь это работает по той же логике. Метод не универсален и на некоторых моделях может быть неэффективен, но в нашем случае это сработало».
Три энкодера независимо друг от друга определяли категорию для каждого токена (слова). Итоговый выбор системы основывался на том, какая из категорий набрала большинство голосов. На соревновании система Papilusion заняла 6-е место из 30.
Как отмечают исследователи, сейчас модели для выявления ИИ работают хорошо, но все еще имеют ограничения, прежде всего плохо обрабатывают данные, выходящие за рамки обучающих, и в целом не хватает разнообразных данных для обучения моделей.
«Чтобы получать больше данных, нужно сфокусироваться на их сборе. Этим занимаются и компании, и лаборатории. Конкретно для такого типа задач нужно собирать датасеты, где в текстах используются несколько ИИ-моделей и методов исправления, — комментирует исследователь. — То есть не просто продолжить текст с помощью одной модели, а создавать более реалистичные ситуации: где-то попросить модель дополнить текст, переписать начало, чтобы оно лучше подходило, что-то удалить из него, попробовать часть сгенерировать в новом стиле с помощью другого промпта (инструкции) для модели. Также, конечно, важно собирать данные и на других языках, на разные тематики».
Обширное исследование в США показало, что псов с безупречным поведением практически не бывает, и выявило наиболее распространенные недочеты, с которыми сталкиваются владельцы питомцев.
В шаровом скоплении Омега Центавра надеялась найти так называемую черную дыру промежуточной массы — нечто среднее между остающимися после «умирающих» звезд небольшими черными дырами и сверхмассивными, которые наблюдают в центрах галактик. Хотя такие черные дыры ищут давно, пока их поиски в космосе безуспешны. Похоже, их нет и в Омеге Центавра, зато есть целая система из других черных дыр.
Каждый, кто заботится о своем здоровье, уже слышал о модной биодобавке, благодаря которой, по словам производителей, волосы, суставы и кожа станут здоровее. Ученые ПНИПУ рассказали, так ли это на самом деле, из каких животных добывают коллаген, когда организм перестает его вырабатывать в нужном количестве и как это сказывается на здоровье человека, почему женщинам он нужнее, правда ли эффективна косметика с этим белком и к чему приводят инъекции на его основе?
О том, где скрывается человеческое «я», что такое «знающие нейроны», какие страны наиболее активно развивают нейронауки и о том, почему нам важно признать наличие сознания у животных, мы поговорили с одним из самых выдающихся нейробиологов, директором Института перспективных исследований мозга МГУ имени М.В. Ломоносова, академиком Константином Анохиным.
Одни из самых ярких объектов во Вселенной — квазары — представляют собой активные ядра галактик, питаемые центральными сверхмассивными черными дырами. Электромагнитное излучение, испускаемое этими объектами, позволяет астрономам изучать структуру Вселенной на ранних этапах ее развития, однако мощный радиоджет, исходящий от недавно обнаруженного экстремально яркого квазара J1601+3102, ставит под сомнение существующие представления о «космической заре».
На поверхности карликовой планеты между Марсом и Юпитером наблюдают сложные органические соединения. Когда их обнаружили в одном кратере, то ученые предположили, что это вещества с упавшего небесного тела. Теперь планетологи увидели признаки органики еще в 11 регионах Цереры и пришли к выводу, что это не импорт, а продукты собственного производства.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Обсерватории постоянно улавливают «мигающие» радиосигналы из глубин Вселенной. Чаще всего их источниками оказываются нейтронные звезды, которые за это и назвали пульсарами. Но к недавно обнаруженному источнику GLEAM-X J0704-37 они, по мнению астрономов, отношения не имеют.
Многие одинокие люди считают, что окружающие не разделяют их взглядов. Психологи из США решили проверить, так ли это на самом деле, и обнаружили общую особенность у людей с недостаточным количеством социальных связей.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии