• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
06.02.2024, 10:44
Полина Меньшова
15,7 тыс

Аспирант доказал, что вековой математический закон способен ускорить обучение ИИ

❋ 6.5

Согласно исследованию Массачусетского технологического института (США), кодирование симметрий поможет языковым моделям обучаться на меньшем количестве данных. Это доказал аспирант, который применил закон Вейля к работе с нейросетями и сформулировал связь между симметричностью данных и размером обучающей выборки.

Кадр из сериала «Теория большого взрыва»
Кадр из сериала «Теория большого взрыва» / © wbd.com / Автор: Наталья Федосеева

Чтобы языковая модель работала корректно, ее необходимо обучить на достаточном количестве данных (обучающая выборка). Далее алгоритм тестируют на других данных, которые называются валидационной выборкой. Чем меньше нейросеть ошибается на валидации, тем выше точность алгоритма и качественнее результат работы.

Иногда, чтобы обучить алгоритм, нужно большое количество данных. Если они есть, обучение просто занимает много времени. Когда их не хватает, как бывает, например, в вычислительной химии, это напрямую влияет на результаты исследований. Аспирант Массачусетского технологического института Бехруз Тахмасеби (Behrooz Tahmasebi) еще в студенческие годы предположил, что машинное обучение можно рассмотреть в плоскости дифференциальной геометрии.

Закон, который использовал Тахмасеби, больше века назад сформулировал немецкий математик Герман Вейль. Полученную им формулу традиционно применяли к физическим процессам, например к колебанию струны. Аспирант заметил: закон связан с оценкой входных данных (измеряет сложность спектральной информации), однако не учитывает симметрию. Тахмасеби допустил, что адаптированная формула может облегчить машинное обучение.

В соавторстве с доцентом Технического университета Мюнхена (Германия), приглашенным преподавателем МТИ Стефани Джегелкой (Stefanie Jegelka) Тахмасеби сформулировал и доказал теорему, которая демонстрирует линейную зависимость между количеством симметрий во входных данных и скоростью обучения нейросети. Если алгоритм обучается на изображениях, которые можно разделить на две симметричные части, то нейросетевой модели при кодировании симметрий понадобится «запомнить» в два раза меньше информации (половину картинки) и потратить в два раза меньше времени. Если симметричных фрагментов в каждом компоненте выборки 10, то и время обучения нейросети снизится в 10 раз. Точность алгоритма при этом не пострадает или даже увеличится.

С помощью открытия Тахмасеби и Джегелки можно решать и менее очевидные задачи. Допустим, нейросети необходимо выбрать все картинки, на которых есть цифра «3». Если не учитывать симметрии, то алгоритм будет внимателен к ее местонахождению (вверху поля, внизу, по центру, справа и так далее) и положению (перевернута, наклонена). Когда симметричность данных закодируют, модель узнает цифру «3» на изображении вне зависимости от того, как ее на нем разместили.

В научной статье, которую высоко оценили на Конференции по машинному обучению и вычислительной нейронауке и препринт которой доступен на arxiv.org, Тахмасеби и Джегелка сделали еще один значимый вывод. Если использовать многомерную симметрию, преимущество будет экспоненциальным. Вторая теорема исследователей демонстрирует, что это максимальный результат, которого можно достичь. Представленный в работе алгоритм при этом универсален: он применим к любым симметриям — в том числе к тем, которые откроют в будущем.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Журналист, преподаватель НИУ ВШЭ, главный редактор медиа о русском языке «Изборник». Специализируется на популяризации лингвистики, психологии, нейробиологии и медицины.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
23 декабря, 10:51
Игорь Байдов

Среди самых интригующих открытий космического телескопа «‎Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.

23 декабря, 10:17
Максим Абдулаев

Группа исследователей опровергла классическую теорию о случайности вымирания видов на примере морских хищников. Анализ эволюции акул и скатов за последние 145 миллионов лет показал, что риск исчезновения вида напрямую зависит от времени его существования: «новички» погибают гораздо чаще, чем эволюционные долгожители. Кроме того, ученые установили, что знаменитый астероид, погубивший динозавров, нанес океану не такой сильный удар, как последующее изменение климата.

23 декабря, 14:06
Андрей Серегин

Давно известно, что видеоигры имеют массу не только негативных, но и положительных последствий. Ученые из Великобритании выяснили, что яркие и позитивные игры без насилия могут вызвать у молодых игроков чувство детского интереса.

23 декабря, 10:51
Игорь Байдов

Среди самых интригующих открытий космического телескопа «‎Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.

19 декабря, 15:22
Андрей Серегин

Экологическое состояние морей, омывающих развитые и развивающиеся страны, — давняя проблема, о которой говорят ученые. Авторы нового исследования выявили в Средиземном море пещеры с рекордным количеством мусора.

19 декабря, 20:02
Evgenia Vavilova

Исследователи доказали, что влияние больших сделок на рынок описывается квадратичной зависимостью. Основой для анализа стали данные Токийской биржи.

8 декабря, 13:09
Александр Березин

С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.

17 декабря, 14:19
Игорь Байдов

На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.

29 ноября, 12:42
Александр Березин

Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно