Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Как искусственный интеллект спасет отечественное ЖКХ
Аббревиатура ЖКХ хорошо знакома каждому россиянину. За ней скрывается целый спектр привычных образов. При этом цифровизация и применение искусственного интеллекта в этом контексте вспоминаются далеко не первыми. Сфера коммунальных услуг не чужда высоким технологиям, просто они не всегда заметны пользователю. Naked Science рассказывает, как искусственный интеллект, большие данные, нейросети и машинное обучение делают городскую инфраструктуру надежнее и эффективнее.
Определению понятия «искусственный интеллект», истории его развития и основным вехам связанного с ним научно-технического прогресса посвящен первый материал нашего цикла про ИИ. Там же описаны основные нюансы классификации подобных алгоритмов. Но в этом тексте нам придется кратко вернуться к тонкостям терминологии, чтобы немного сузить определения.
Первое, что важно упомянуть — в информатике сейчас понятие «искусственный интеллект» практически не используется в контексте прикладных задач. Этот термин чаще эксплуатируют маркетологи и журналисты, чтобы кратко описать целый комплекс технологий, методов и подходов: большие данные, нейросети, машинное обучение. Если очень сильно упрощать, то ИИ в привычном современному массовому читателю понимании — это нейросетевой алгоритм, обученный на неком наборе данных для решения задач, которые с трудом поддаются «обычным программам» (детерминированным алгоритмам).
Строго говоря, нет никаких физических препятствий для создания программы, способной распознавать изображения, находить оптимальный маршрут и определять самого качественно работающего дворника безо всяких нейросетей. Даже без машинного обучения. Просто это потребует заранее учесть при написании ее кода все нюансы использования — сразу создать набор любых триггеров и определить необходимые действия в ответ на их срабатывание. Со стороны такой продукт будет выглядеть мало отличающимся от современных нам программ с припиской ИИ в названии либо описании. И, в каком-то смысле, это будет слабый искусственный интеллект, просто с невероятно узким полем применения.
Машинное обучение позволяет обойти проблему необходимости заранее предугадать все возможные исходы событий. Более того, иногда точно предсказать вообще ничего нельзя — многие задачи требуют оперирования вероятностями. Тут и приходят на помощь обучаемые алгоритмы, главное — подобрать достаточно релевантных данных для их тренировки. Они выявляют скрытые или просто неочевидные человеку закономерности и хорошо работают со стохастическими процессами (в ходе которых множество переменных изменяется случайным образом).
Для удобства и простоты далее будем называть нейросетью любой обученный алгоритм. И назначим этот термин, пусть немного условно, синонимом искусственного интеллекта.
Также требуется определить, что вообще скрывается за аббревиатурой ЖКХ помимо красочных образов. В общем смысле — всё, что связано с обеспечением населения благами цивилизации. То есть — водоснабжением, электричеством, теплом, связью, канализацией, а также комфортной городской средой. Такая среда — это исправные дома с дворами около них и определенный набор основных бытовых услуг (например, вывоз мусора и уборка общественно доступных территорий). Если трактовать жилищно-коммунальное хозяйство совсем широко, то в него входит вообще вся городская инфраструктура: от дорог и мостов до транспорта и градоуправления.
С точки зрения российского законодательства, жилищно-коммунальное хозяйство — комплекс подотраслей, обеспечивающий функционирование инженерной инфраструктуры, различных зданий населенных пунктов, создающий удобства и комфортность проживания и нахождения в них граждан путем предоставления им широкого спектра жилищно-коммунальных услуг.
Остановимся на таком варианте: ЖКХ — это комплекс услуг по снабжению жилого фонда водой, топливом (газом, в случае России), теплом, электричеством и обеспечению его безопасной эксплуатации. Последний пункт подразумевает вывоз мусора и отвод канализационных стоков, а также уборку, техническое обслуживание и ремонт всей связанной инфраструктуры, включая водопроводы, линии электропередач и технику домового хозяйства (лифты, насосы водоснабжения, домофоны, электротехническое оборудование). Не забываем также о дворах, парках, скверах, детских и спортивных площадках, а также местах для выгула собак — все их нужно содержать в порядке. Список можно продолжать долго, но суть понятна. Какое место во всем этом может найти себе искусственный интеллект?
Универсальные функции
Нейросети отлично показывают себя в задачах, требующих распознавания образов и голоса. Эта область применения искусственного интеллекта не уникальна для ЖКХ, но не упомянуть ее было бы преступлением. Дело в том, что любая коммунальная организация в своей работе обязана оперативно и качественно реагировать на огромное количество обращений пользователей — рядовых граждан, на деньги которых они существуют. Содержание целого штата телефонных диспетчеров (операторов) для каждого района города или отдельного населенного пункта обходится в немалые суммы. Вдобавок нагрузку на диспетчерские заранее рассчитать невозможно — в случае какого-то происшествия или просто неполадок дозвониться бывает невозможно. Работу этих структур можно оптимизировать — сделать более эффективной и экономичной.
Решения существуют давно, их разработано множество — это широчайший спектр программно-аппаратных комплексов для контакт-центров. Среди них есть системы управления персоналом (WFM), прогнозирующие нагрузку на операторов первой линии с помощью ИИ, роботы-автоответчики, распознающие сложные устные обращения, и даже полноценные голосовые помощники. Правда, важно учитывать один нюанс — чтобы их эффективно применять, необходимо модернизировать структуру старых добрых диспетчерских ЖКХ, отделив от них задачи обработки входящих обращений. Тогда сотрудники не будут выполнять в одном лице роли и телефонного оператора, и диспетчера. Процесс становится гораздо эффективнее: ИИ снимает нагрузку с первой линии контакт-центра (типовые звонки и справка), живые операторы занимаются обращениями, требующими внимания человека (с которыми не справился робот), а диспетчеры координируют работу выездных служб и контролируют качество выполнения заявок.
В этой сфере много отечественных продуктов — и некоторые из них уже адаптированы под специфику компаний, работающих в сфере ЖКХ. Иногда разрабатываются уникальные решения.
В столице, например, искусственный интеллект с осени 2020 года применяется на линии Единого диспетчерского центра. Изначально голосовой помощник был запущен для того, чтобы разгрузить линию в пиковый период старта отопительного сезона. Сейчас робот умеет отвечать на звонки горожан уже более чем по ста темам и обрабатывает почти треть от всего объема поступающих в ЕДЦ обращений.
«Чаще всего москвичи обращаются к голосовому ассистенту по вопросам отопления и уборки, освещения в подъезде, ремонта лифтов, сантехники в квартирах. Робот не только может принять заявку на вызов мастера, но и учится давать человеку консультации по наиболее распространенным вопросам. С 2020 года он принял уже более 2,5 миллиона звонков», — рассказал Андрей Савицкий, руководитель столичного Общегородского контакт-центра.
Общение граждан с коммунальщиками может быть не только устным, но и более официальным — на бумаге. Каждый, кто хоть раз пытался в сельской местности подать заявление на подключение к электросети, примерно представляет, сколь мучительным бывает документооборот в ЖКХ. Вот бы все требуемые свидетельства, заявления и чеки можно было заранее отправить на проверку правильности заполнения и комплектности пакета документов — мечта! Кстати, ее воплощение не за горами. В «Росреестре», например, уже вовсю тестируют такой функционал для обращений по своему профилю в МФЦ. Используемое программное решение содержит технологии искусственного интеллекта для оцифровки бумажных документов.
Еще одна любопытная реализация распознавания изображений — отслеживание нарушений эксплуатации домов и дворов по камерам видеонаблюдения. Если предыдущие два примера теоретически реализуются детерминированным алгоритмом, который учитывает множество различных условий использования, то здесь уже точно без нейросетей не обойтись. Камеры могут иметь разный угол обзора, степень загрязнения оптики и условия освещения, но программа все равно должна замечать мусор на газоне, сосульки на карнизах, снег на крышах и сломанную ограду. Концепция прорабатывается сразу несколькими российскими IT-компаниями и тестируется в некоторых городах.
В Москве искусственный интеллект уже не первый год помогает городским службам выявлять нарушения в содержании дворов и улиц. Нейросеть, предварительно обученная на большом объеме изображений, анализирует скриншоты с камер городской системы видеонаблюдения и умеет находить на них 20 типов недочетов. Например, она может определить переполненный мусорный контейнер, яму на дороге или неубранный снег.
«В работе Центра автоматической фиксации административных правонарушений (ЦАФАП), который мы развиваем совместно с ГКУ «Новые технологии управления», используются изображения более чем со 170 тысяч камер видеонаблюдения. Помимо операторов, их анализирует искусственная нейронная сеть. Если ИИ находит признаки нарушения, он сигнализирует об этом человеку – ему остается только перепроверить результат работы нейросети и, если недочет подтверждается, передать информацию в работу коммунальным службам. Таким образом, искусственный интеллект помогает быстрее и эффективнее выявлять и устранять нарушения в содержании дворов и улиц — а значит, делать город еще более комфортным для жизни», — рассказал Дмитрий Головин, начальник управления городского видеонаблюдения Департамента информационных технологий города Москвы.
Уникальные особенности ЖКХ
Задачи анализа изображений и звуков стоят перед ИИ не только в коммунальной сфере, да и для нее они адаптируются в этой области сравнительно просто. Другая сильная сторона нейросетей — высокая эффективность в случаях, когда требуется работать с вероятностями (случайными событиями) и неявными взаимосвязями. Ее обязательно стоит ожидать в специфическом программном обеспечении, созданном для нужд ЖКХ. Допустим, для планирования ремонта жилого фонда и коммуникаций — именно такой ИИ предложен в проекте Минстроя «Умный город».
Среди наиболее очевидных применений нейросетей — планирование движения мусоровозов и уборочных машин. Их маршруты проходят не только по улицам, но и по придомовым территориям, тротуарам и должны учитывать множество мелочей. Обычное навигационное программное обеспечение тут не справится, так что сейчас для этого используется лишь человеческий труд. Искусственный интеллект же вполне может оптимизировать эту задачу. Причем для него не будет проблемой учесть целый спектр дополнительных факторов — вроде расписания образовательных учреждений в районе и графика работы дворников. Ряд подобных разработок, помимо ИИ использующих технологии «интернета вещей», эксплуатируется российскими коммунальщиками в тестовом режиме. Но пока испытания не законились, и оценивать результаты мы будем в будущем (хоть и ближайшем).
Огромные перспективы ждут нейросетевые алгоритмы в энергетике, водоснабжении и водоотведении. Суточные колебания загруженности этих трех столпов коммунального хозяйства вынуждают инженеров закладывать значительный запас прочности в соответствующую инфраструктуру. А это, в свою очередь, увеличивает стоимость ее строительства и эксплуатации, что, в свою очередь, сказывается на тарифах. Вдобавок энергетика будущего обязательно будет все более и более «зеленой», а значит в ней станет больше нестабильных источников энергии (ветряки и солнечные панели зависят от капризов природы). Пики потребления нужно уравновешивать накопителями либо резервными генерирующими мощностями.
Тут-то на помощь и приходит ИИ: анализируя нынешнюю инфраструктуру, нейросети могут заметить те взаимосвязи и зависимости компонентов, которым ранее не придавалось значения (или его вовсе не видели). На основе такого свежего машинного взгляда получается проект модернизации, который не только повышает качество жизни людей, но и становится эффективнее предшественника. А чем эффективнее инфраструктура, тем она дружелюбнее по отношению к окружающей среде и карману пользователей. Искусственный интеллект уже используется в планировании городской инфраструктуры и балансировке энергосетей.
Что самое главное, нейросети хорошо справляются с обработкой больших данных. Это — прямая дорога в мониторинг сотен тысяч параметров с мириадов датчиков, которыми в ближайшие годы начнут оснащать российское жилищно-коммунальное хозяйство. Причем если «обычные» программы способны лишь отслеживать конечное количество показателей, то ИИ «делает выводы» из отношений между данными с разных сенсоров. Такие программно-аппаратные комплексы позволяют превентивно реагировать на износ инфраструктуры — трубопроводов, электросетей и оборудования. Главное, чтобы значительная их доля была оснащена необходимыми датчиками. Хотя и при осмотре людьми, которые потом заносят строго регламентированные оценки в систему, она тоже будет работать, просто менее оперативно и эффективно.
Залог прогресса — сдержанный оптимизм
Искусственный интеллект, а точнее, технологии машинного обучения — мощный инструмент, способный повысить производительность труда в любой области человеческой деятельности. И жилищно-коммунальная сфера не должна быть исключением. Но как и любой другой инструмент, он требует мастерского использования. Более того, ни одна технология сама по себе не является универсальной палочкой-выручалочкой, волшебным образом мгновенно устраняющей все возможные проблемы. Эффект от модернизации далеко не всегда заметен сразу.
Иными словами, одного лишь «бренда» ИИ в названиях используемых технологий точно недостаточно. Требуется кропотливая работа многих профессионалов и системное внедрение новшеств — благо российские ВУЗы ежегодно выпускают тысячи молодых специалистов по профильным специальностям, а отечественные компании разрабатывают собственные решения для оптимизации процессов в ЖКХ. Наша страна движется в тренде на внедрение высоких технологий в этой сфере. Однако впереди еще много работы.
Научный консультант Международной лаборатории биоинформатики НИУ ВШЭ Алан Герберт предложил новое объяснение одной из нерешенных загадок биологии — происхождения генетического кода. Согласно исследованию, современный генетический код мог возникнуть благодаря самоорганизующимся молекулярным комплексам — тинкерам. Новую гипотезу автор выдвинул на основе анализа вторичных структур ДНК с помощью нейросети AlphaFold3.
Остывшая после Большого взрыва Вселенная была наполнена холодным, нейтральным газом, заслонявшим свет звезд. К счастью, за космологическими Темными веками пришла эпоха реионизации. Первые звезды и галактики ионизировали межгалактическое пространство, и Вселенная вновь засияла. И вот ученые нашли древнейшую галактику, излучение которой реионизирует окружающий нейтральный газ.
Во многих западных странах рождаемость снижается или стагнирует, но при этом статистика свидетельствует о росте числа собак-компаньонов. В результате в некоторых государствах, к примеру, в США, домашних псов уже больше, чем детей. О возможных причинах, стоящих за тенденцией, в новом исследовании размышляет Энико Кубиньи (Enikő Kubinyi), профессор и заведующая кафедрой этологии в Университета Этвёша Лоранда (Венгрия).
Крупные современные города России — продукт своеобразной эволюции. Их морфология может сочетать историческую застройку, советское наследие и здания времен рыночной экономики. Авторы новой статьи — ученые из ВШЭ и Института географии РАН — заинтересовались, насколько российские города соответствуют современной концепции 15-минутного города. Она описывает доступность инфраструктуры для жителей: могут ли те самостоятельно добраться (пешком или на велосипеде) до школ, больниц, театров и других необходимых заведений за четверть часа.
К современному транспорту и строениям предъявляются жесткие требования по остеклению. Оно должно обеспечивать безопасность, хорошую тепло- и шумоизоляцию, противостоять сложным погодным условиям. Белорусские инженеры предложили революционное решение — вакуумные модули остекления (ВМО), которые практически исключают теплопередачу за счет вакуумной прослойки между стеклами. Эта разработка особенно актуальна в контексте глобального тренда на энергоэффективность и экологичность транспортных средств.
Прежде чем на Земле появились привычные нам животные, ее населяли «черновики Бога». Это таинственные существа, жившие в эдиакарском периоде и совсем не похожие на своих преемников. В новом исследовании ученые описали 211 окаменелостей мелкой двусторонне-симметричной Parvancorina minchami, найденных у берегов Белого моря. Авторы сумели реконструировать рост и развитие парванкорины, а также оценили продолжительность ее жизни.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии