Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
За последние пять лет ИИ стал на девять процентов точнее выявлять рак кожи
Исследователи проанализировали научные статьи о диагностике рака кожи с помощью технологии искусственного интеллекта и выяснили, что чаще всего для этой цели используют сверточные нейросети, основанные на глубоком обучении. При этом самый точный результат (93 процента точности) дают системы, основанные на машинном обучении, что делает их наиболее предпочтительным методом диагностики. Кроме того, за последние пять лет точность таких алгоритмов повысилась более чем на девять процентов.
Результаты исследования, поддержанного грантом Президентской программы Российского научного фонда (РНФ), опубликованы в журнале Computers in Biology and Medicine.
Рак кожи — один из самых распространенных типов рака, поскольку он составляет более 40 процентов от всех выявленных онкологических заболеваний. Рак кожи тяжело диагностировать на начальных стадиях, потому что злокачественные формы пигментации можно спутать с доброкачественными, которые есть у всех людей — например, родинками. При этом ранняя диагностика крайне важна, поскольку в этом случае выживаемость пациентов составляет около 99 процентов. Если же выявить заболевание на более поздних стадиях, когда злокачественный характер пигментации становится очевиден (появляется зуд, язвы или корочки, неоднородный темный цвет), выживаемость снижается до 27 процентов.
В основном рак кожи диагностируют с помощью дерматоскопа — прибора, который позволяет подсветить потенциальное новообразование и рассмотреть его с десятикратным увеличением. Точность такого анализа составляет 65–75 процентов. Для помощи врачам в ранней диагностике иногда применяются системы искусственного интеллекта: они сравнивают родинку, которую «видят» у пациента, с набором из десятков тысяч фотографий пигментных пятен из медицинских баз.
Чаще всего для диагностики рака кожи используются сверточные нейросети, хотя они не всегда демонстрируют высокую точность. Отчасти проблема точности связана с тем, что не во всех базах данных изображения уже отмечены как злокачественные или доброкачественные, из-за чего данных для обучения алгоритма может быть недостаточно. Кроме того, фотографии не стандартизированы, что также уменьшает достоверность диагностики с помощью искусственного интеллекта.
Ученые из Северо-Кавказского Федерального университета (Ставрополь) проанализировали более 10 тысяч научных статей, выпущенных с 2019 по 2023 год, и выбрали 171 статью, в которой была четко прописана методология диагностики рака по фотографиям пигментных пятен. Далее авторы сгруппировали статьи по тому, какой алгоритм искусственного интеллекта использовался. Они выделили пять групп: алгоритмы машинного обучения, сверточные нейросети, ансамбли нейронных сетей, мультимодальные нейросети и продвинутые интеллектуальные методы.
Алгоритмы машинного обучения основаны на том, что программа «тренируется» распознавать опухоли на наборе снимков, где каждая фотография подписана человеком как изображающая злокачественное или доброкачественное новообразование, а затем ищет закономерности на новых фотографиях новообразований.
Сверточные нейросети распознают изображения, разбивая их на слои, в которых можно затем менять контрастность, яркость, цветовую гамму без потери качества изображения. Ансамбли нейронных сетей — это сочетание нескольких моделей, которые обучаются отдельно разным операциям, а затем объединяются. Мультимодальные нейросети одновременно работают с разными типами данных (текст, цифры, фотографии), а продвинутые интеллектуальные методы основаны на других принципах обучения, например, преобразовании изображений в векторы.
Оказалось, что лишь в семи процентах работ ученые использовали мультиклассовые базы данных, в которые входили не только фотографии пигментных пятен, но и результаты биопсии (например, анализ крови на онкомаркеры, на общий белок, изучение формы клеток во взятом у пациента образце кожи). Авторы заключили, что для повышения точности диагностики база данных должна включать, помимо этих признаков, информацию о пациенте — его возраст, пол, тип кожи и анатомическое расположение родинки. Эти данные есть не всегда, поскольку, хотя имеются рекомендации по сбору биомаркеров рака, единых стандартов наборов данных пока не существует.
В 39 процентах исследований алгоритм сравнивал фотографию с базой данных, в которой содержалось менее 1000 изображений, что в 10 раз меньше, чем нужно для качественной выборки. Поэтому даже если точность диагностики рака у алгоритма в самом исследовании высокая, на практике, когда через алгоритм будут проходить данные сотен пациентов, возможно, точность будет ниже. Ученые также установили, что чаще всего для диагностики рака кожи — в 39 процентов случаев — используются сверточные нейронные сети, тогда как анализ показал, что самая высокая точность — на три процента выше, чем у сверточных нейросетей — достигается алгоритмами с машинным обучением.
Авторы выяснили, что за последние пять лет средняя точность распознавания рака кожи у моделей, основанных на машинном обучении, увеличилась на 9,2 процента, достигнув 93 процентов, а ансамблевых — только на три процента. При этом точность мультимодальных нейронных сетей упала на 9,7 процента, а сверточных нейросетей — на один. Также исследователи определили, что для работы алгоритмы искусственного интеллекта чаще всего (37 процентов из всех исследований на основе мультиклассовых баз) пользуются базой изображений HAM10000, в которой содержится 10 тысяч фотографий семи типов новообразований кожи у людей разных национальностей. Использование этой базы данных повышает среднюю точность диагностики с использованием искусственного интеллекта: так, за последние пять лет ее качество возросло на 6,9 процента до 92,3 процента в среднем для разных алгоритмов.
«Результаты, которые мы получили, показывают огромный потенциал автоматизированной ранней диагностики рака кожи на основе искусственного интеллекта. Однако подобные системы все еще несут в себе этическую и юридическую двусмысленность, а также проблему отсутствия большого количества стандартизированных клинических баз данных. Поэтому иногда модель диагностирует предвзято, опираясь на диагноз, преобладающий в используемой базе данных.
В результате обобщить критерии диагностики с помощью искусственного интеллекта пока нельзя. В дальнейшем нужны исследования, которые помогут понять, как внедрить алгоритмы искусственного интеллекта для вспомогательной медицинской диагностики, в частности, для того, чтобы точнее выявлять рак кожи на ранних стадиях», — рассказывает руководитель проекта, поддержанного грантом РНФ, Павел Ляхов, кандидат физико-математических наук, заведующий кафедрой математического моделирования Северо-Кавказского федерального университета.
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
В мире квантовой физики каждый день происходят удивительные открытия, которые меняют наше понимание фундаментальных законов природы. Недавнее исследование, проведенное на физическом факультете ТГУ, раскрыло новые свойства электронов, которые могут иметь важные последствия для квантовой электродинамики и технологий будущего. Ученые обнаружили, что волновая функция одного электрона может поддерживать особые квазичастицы — плазмон-поляритоны.
Исследователи попытались выяснить, как можно распознать копию нашей планеты в глубоком космосе. Они «поместили» Землю в далекую звездную систему и обнаружили, что изменения ее яркости по мере вращения вокруг оси и движения по орбите выдавали бы очень важную подробность: этот мир окутан облаками.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
В мире квантовой физики каждый день происходят удивительные открытия, которые меняют наше понимание фундаментальных законов природы. Недавнее исследование, проведенное на физическом факультете ТГУ, раскрыло новые свойства электронов, которые могут иметь важные последствия для квантовой электродинамики и технологий будущего. Ученые обнаружили, что волновая функция одного электрона может поддерживать особые квазичастицы — плазмон-поляритоны.
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
Исследователи из Южной Кореи и Канады нашли новое объяснение «парадоксу счастья». Они обнаружили, что попытки стать счастливее приводят к противоположному результату, потому что истощают систему самоконтроля.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии