В Сколтехе оценили перспективы использования перовскитных солнечных батарей в космосе

Ученые из Сколтеха, ИПХФ РАН, МГУ и УФУ задались вопросом о возможности использования перовскитных солнечных батарей на космических кораблях и спутниках и изучили их радиационную стабильность по отношению к действию гамма-лучей.

4 433

Выбор редакции

Результаты работы опубликованы в Journal of Physical Chemistry Letters, а также отражены на обложке журнала.

 

Перовскитные солнечные батареи новый виток в развитии технологий солнечной энергетики. С момента создания первых солнечных батарей на основе комплексных галогенидов свинца с перовскитной структурой в 2009 году их эффективность возросла с 3,8 до 24%.

 

Такой прогресс не демонстрировала ни одна из предшествующих технологий фотоэлектрических преобразователей. Ученые во всем мире возлагают большие надежды на перовскитные солнечные батареи, ожидая, что они в перспективе смогут заменить дорогостоящие кремниевые панели.

 

Кроме потенциально низкой цены, перовскитные солнечные батареи гораздо легче кремниевых и тонкопленочных халькогенидных, что делает их чрезвычайно привлекательными для использования в космосе.

 

Группа ученых под руководством профессора Сколтеха Павла Трошина стала одним из первых исследовательских коллективов в мире, изучающих перспективы использования перовскитных солнечных батарей в космосе.

 

«Солнечные батареи в космосе должны выдерживать не только повышенную солнечную радиацию, но и быть устойчивыми к сравнительно высоким дозам гамма-лучей, что необходимо для стабильной эксплуатации устройств на орбите в течение нескольких лет.

 

В нашей работе мы исследовали комплексный галогенид состава Cs0.15MA0.10FA0.75Pb(Br0.17I0.83)3 с перовскитной структурой, известный как triple-cation perovskite в зарубежной литературе и считающийся наиболее стабильным в этой группе материалов.

 

Перовскитные пленки и солнечные батареи были подвергнуты жесткому облучению дозой до 5000 Грей.

 

В пределах 300 Грей перовскитные солнечные батареи оказались достаточно стабильными, но при дальнейшем повышении дозы было обнаружено быстрое падение тока короткого замыкания и эффективности преобразования света в устройствах.

 

С использованием набора комплементарных методов было установлено, что причиной падения характеристик солнечных элементов является разделение фаз комплексных бромидов и йодидов, то есть анионы Br- и I- покидают решетку кристалла смешанного состава и формируют отдельные кристаллические или аморфные домены с преимущественным содержанием брома или йода.

 

Необычный эффект разделения фаз комплексных бромидов и йодидов под действием лучей был обнаружен нами впервые», рассказывает аспирантка Сколтеха Александра Болдырева.

 

Таким образом, ученые выяснили, что гибридные бромидно-йодидные комплексные галогениды свинца пока не подходят для использования в космосе, необходим поиск более стабильных материалов, на чем и сосредоточены сейчас усилия исследовательского коллектива под руководством профессора Павла Трошина.

Naked Science Facebook VK Twitter
Сколтех
61Статья
Негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института.
4 433
Комментарии
Вчера
Чего умеют то и делают. В железки можно вбухать денег...
Вчера
Военные и политики с обоих сторон считали ДРСМД...
Вчера
Ну так если посмотреть на все эти новые частично...

Колумнисты

Физтех
142Статьи
Сколтех
61Статья
Discovery Channel
39Статей
ТюмГУ
27Статей
СФУ
15Статей
Комментарии

Быстрый вход

Или авторизуйтесь с помощью:

на сайте, чтобы оставить комментарий.
Вы сообщаете об ошибке в следующем тексте:
Нажмите Отправить ошибку