Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские ученые научили искусственный интеллект разбираться в фигурном катании
Исследователи из НИУ ВШЭ в Перми разработали NeuroSkate — нейросеть, которая распознает движения фигуристов на видео и определяет правильность выполняемых элементов. Алгоритм успешно справляется с базовыми элементами, дальнейшее развитие модели позволит повысить точность распознавания сложных прыжков.
Фигурное катание — технически сложный вид спорта, где важны не только скорость и сила, но и точность движений. Тренеры привыкли полагаться на собственное зрение и опыт, но объективные данные могут дать больше информации: какие элементы удаются лучше, какие требуют доработки, как меняется техника со временем. Особенно в детском спорте, где группы достигают 15 человек и тренеру сложно одновременно следить за каждым спортсменом.
Команда проекта NeuroSkate (Анна Проворова, Дарья Семёнова, Людмила Гергерт, Софья Куликова, Ирина Полякова) решила проверить, как искусственный интеллект справится с анализом движений фигуристов. Исследователи выбрали шесть движений, которые проще всего определить по позе спортсмена: бильман, вращения, кораблик и несколько базовых одинарных прыжков — флип, риттбергер и лутц. Главная идея состояла в том, чтобы нейросеть могла автоматически находить фигуриста на видео, отслеживать его движения и подписывать, какой элемент выполняется.
«Звучит просто, но на практике это задача не из легких. Для обучения алгоритмов нужны большие базы данных, а их в открытом доступе почти нет. В исследованиях анализируют взрослых спортсменов, а вот видео юных фигуристов с размеченными движениями до сих пор никто не собирал», — рассказывает младший научный сотрудник Центра когнитивных нейронаук НИУ ВШЭ в Перми Анна Проворова.
Проект реализовывался вместе со Спортивной школой олимпийского резерва «Орленок» в Перми, которая предоставила данные для обучения нейросети.
«Пока фигуристы были на летнем перерыве, мы использовали записи соревнований и открытые видео. Позже удалось снять собственные кадры с тренировок, но только на телефон, без профессионального оборудования, что сказалось на качестве изображения и точности разметки», — рассказывает заведующая Центром когнитивных нейронаук НИУ ВШЭ в Перми Софья Куликова.
Распознавание движений состоит из нескольких этапов. Сначала видео разбивается на кадры, на каждом из них выделяются ключевые точки на теле фигуриста. Затем последовательность из 60 кадров с отмеченными точками передается в нейросеть, которая анализирует движения спортсмена.
На первых этапах модель тестировали в бинарной классификации: ей предлагали различать движения попарно, например риттбергер и кораблик, без добавления других элементов. В таком формате система работала стабильно, показывая точность 72%. Но как только задача усложнялась, а элементов становилось больше, система начинала ошибаться. Исследователи продолжили разметку новых видео и дообучили модель, благодаря чему спортсменов стало легче распознавать на видео.
Параллельно разработчики создали веб-приложение, в котором можно загружать тренировочные видео и анализировать статистику конкретного спортсмена. В перспективе это может стать инструментом, который поможет тренерам следить за прогрессом учеников, не пересматривая часы записей.
«Мы надеемся продолжить работу над проектом, так как есть идеи, как улучшить алгоритм: самое первоочередное — собрать большую и качественную базу данных видеозаписей спортсменов. Также есть понимание, как улучшить блок распознавания движений. Например, использовать графовые нейросети. Это очень перспективное направление. Одна из таких моделей (HD-GCN) показала впечатляющие результаты, которые были представлены на крупнейшей конференции по компьютерному зрению ICCV в 2023 году. Однако запустить ее на реальных данных проекта пока не удалось», — рассказывает Анна Проворова.
Исследование выполнено в рамках программы «Приоритет-2030».
Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.
Жизнь в городских условиях давно стала для птиц своеобразной «эволюционной лабораторией». Ученые из Шотландии показали, что сильнее всего размножение птиц ухудшает наличие незнакомых деревьев.
Растительная диета давно стала золотым стандартом для тех, кто мечтает о долгой и здоровой жизни. Но китайские ученые внесли серьезные коррективы в этот постулат. Они обнаружили, что большинство местных долгожителей, перешагнувших столетний рубеж, регулярно употребляют в пищу мясо. Особенно заметна эта связь у одной специфической группы пожилых людей, что заставляет по-новому взглянуть на диетические рекомендации для самых старших поколений.
Хотя зоологи уже не раз наблюдали использование орудий у относительно близких к людям видов, — от приматов до свиней — коровы до сих пор не были за этим замечены. Теперь ситуация изменилась: оказалось, что они могут использовать многоцелевые орудия по-разному, в зависимости от обстоятельств.
Повторное изучение окаменелости галлюцигении, впервые описанной в 1970-х годах, помогло палеонтологам больше узнать о рационе этого древнего существа. Ответ на вопрос о питании нашли не в ее останках, а на теле предполагаемой добычи.
Растительная диета давно стала золотым стандартом для тех, кто мечтает о долгой и здоровой жизни. Но китайские ученые внесли серьезные коррективы в этот постулат. Они обнаружили, что большинство местных долгожителей, перешагнувших столетний рубеж, регулярно употребляют в пищу мясо. Особенно заметна эта связь у одной специфической группы пожилых людей, что заставляет по-новому взглянуть на диетические рекомендации для самых старших поколений.
От рыб произошли все наземные позвоночные, включая нас, но как именно рыбы стали главным населением морей — до последнего времени оставалось неясным. Авторы новой научной работы попытались доказать, что причиной этого было вымирание, возможно, вызванное белыми ночами.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Ученые задались вопросом: почему два расположенных по соседству спутника Юпитера такие разные, ведь на Ио повсеместно извергаются вулканы, а Европа полностью покрыта многокилометровой коркой льда. Есть версия, что Ио когда-то тоже была богата водой, но по итогам недавнего исследования это сочли неправдоподобным.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
