Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские ученые научили искусственный интеллект разбираться в фигурном катании
Исследователи из НИУ ВШЭ в Перми разработали NeuroSkate — нейросеть, которая распознает движения фигуристов на видео и определяет правильность выполняемых элементов. Алгоритм успешно справляется с базовыми элементами, дальнейшее развитие модели позволит повысить точность распознавания сложных прыжков.
Фигурное катание — технически сложный вид спорта, где важны не только скорость и сила, но и точность движений. Тренеры привыкли полагаться на собственное зрение и опыт, но объективные данные могут дать больше информации: какие элементы удаются лучше, какие требуют доработки, как меняется техника со временем. Особенно в детском спорте, где группы достигают 15 человек и тренеру сложно одновременно следить за каждым спортсменом.
Команда проекта NeuroSkate (Анна Проворова, Дарья Семёнова, Людмила Гергерт, Софья Куликова, Ирина Полякова) решила проверить, как искусственный интеллект справится с анализом движений фигуристов. Исследователи выбрали шесть движений, которые проще всего определить по позе спортсмена: бильман, вращения, кораблик и несколько базовых одинарных прыжков — флип, риттбергер и лутц. Главная идея состояла в том, чтобы нейросеть могла автоматически находить фигуриста на видео, отслеживать его движения и подписывать, какой элемент выполняется.
«Звучит просто, но на практике это задача не из легких. Для обучения алгоритмов нужны большие базы данных, а их в открытом доступе почти нет. В исследованиях анализируют взрослых спортсменов, а вот видео юных фигуристов с размеченными движениями до сих пор никто не собирал», — рассказывает младший научный сотрудник Центра когнитивных нейронаук НИУ ВШЭ в Перми Анна Проворова.
Проект реализовывался вместе со Спортивной школой олимпийского резерва «Орленок» в Перми, которая предоставила данные для обучения нейросети.
«Пока фигуристы были на летнем перерыве, мы использовали записи соревнований и открытые видео. Позже удалось снять собственные кадры с тренировок, но только на телефон, без профессионального оборудования, что сказалось на качестве изображения и точности разметки», — рассказывает заведующая Центром когнитивных нейронаук НИУ ВШЭ в Перми Софья Куликова.
Распознавание движений состоит из нескольких этапов. Сначала видео разбивается на кадры, на каждом из них выделяются ключевые точки на теле фигуриста. Затем последовательность из 60 кадров с отмеченными точками передается в нейросеть, которая анализирует движения спортсмена.
На первых этапах модель тестировали в бинарной классификации: ей предлагали различать движения попарно, например риттбергер и кораблик, без добавления других элементов. В таком формате система работала стабильно, показывая точность 72%. Но как только задача усложнялась, а элементов становилось больше, система начинала ошибаться. Исследователи продолжили разметку новых видео и дообучили модель, благодаря чему спортсменов стало легче распознавать на видео.
Параллельно разработчики создали веб-приложение, в котором можно загружать тренировочные видео и анализировать статистику конкретного спортсмена. В перспективе это может стать инструментом, который поможет тренерам следить за прогрессом учеников, не пересматривая часы записей.
«Мы надеемся продолжить работу над проектом, так как есть идеи, как улучшить алгоритм: самое первоочередное — собрать большую и качественную базу данных видеозаписей спортсменов. Также есть понимание, как улучшить блок распознавания движений. Например, использовать графовые нейросети. Это очень перспективное направление. Одна из таких моделей (HD-GCN) показала впечатляющие результаты, которые были представлены на крупнейшей конференции по компьютерному зрению ICCV в 2023 году. Однако запустить ее на реальных данных проекта пока не удалось», — рассказывает Анна Проворова.
Исследование выполнено в рамках программы «Приоритет-2030».
Ученые проследили траекторию упавшего в 2014 году на Землю межзвездного метеороида CNEOS14, чтобы выяснить возможное местоположение гипотетической Девятой планеты. Расчеты указали на участок неба в созвездиях Тельца и Ориона, но поиски не увенчались успехом. Это приводит к нескольким возможным выводам: либо планета еще дальше и тусклее, чем предполагалось, либо она в другом месте, либо ее не существует.
Водоросли — это «сборная солянка» из различных организмов, которые живут в воде и заняты фотосинтезом. Некоторые, впрочем, разучились использовать энергию Солнца, например ницшия Nitzschia sp. Новое исследование посвящено эволюции генома у этой диатомеи. Из работы следует, что заимствование ДНК из бактерии и другие перестройки генома сделали ницшию способной использовать альгинаты. Это важный компонент других водорослей — бурых, вроде фукуса и ламинарии.
Теперь можно быстро тестировать нейросети и внедрять решения на основе их сжатых версий, экономя время и деньги. К примеру, «Яндекс» уже применяет метод HIGGS для ускоренного прототипирования.
Инженеры компании Unitsky String Technologies Inc. разработали несколько вариантов транспортно-инфраструктурных комплексов, способных значительно улучшить пассажирское сообщение в городах, расположенных по обеим берегам крупных водных артерий. Обычно такие мегаполисы сталкиваются с необходимостью строительства дорогих капитальных сооружений — шоссейных мостов, что не всегда подъемно для городского бюджета. Решение белорусских инженеров куда менее ресурсоемкое. Для примера возьмем Ростов-на-Дону, где есть запрос на устойчивое сообщение между левобережной частью города с историческим центром.
До 13 тысяч лет назад в Северной Америке жил вид, который ученые до недавнего времени считали волком. Компания Colossal Biosciences объявила о возрождении этого вымершего вида, но биологические детали ставят ее заявление под серьезное сомнение.
Ученые проследили траекторию упавшего в 2014 году на Землю межзвездного метеороида CNEOS14, чтобы выяснить возможное местоположение гипотетической Девятой планеты. Расчеты указали на участок неба в созвездиях Тельца и Ориона, но поиски не увенчались успехом. Это приводит к нескольким возможным выводам: либо планета еще дальше и тусклее, чем предполагалось, либо она в другом месте, либо ее не существует.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
До 13 тысяч лет назад в Северной Америке жил вид, который ученые до недавнего времени считали волком. Компания Colossal Biosciences объявила о возрождении этого вымершего вида, но биологические детали ставят ее заявление под серьезное сомнение.
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии