Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Российские ученые научили искусственный интеллект разбираться в фигурном катании
Исследователи из НИУ ВШЭ в Перми разработали NeuroSkate — нейросеть, которая распознает движения фигуристов на видео и определяет правильность выполняемых элементов. Алгоритм успешно справляется с базовыми элементами, дальнейшее развитие модели позволит повысить точность распознавания сложных прыжков.
Фигурное катание — технически сложный вид спорта, где важны не только скорость и сила, но и точность движений. Тренеры привыкли полагаться на собственное зрение и опыт, но объективные данные могут дать больше информации: какие элементы удаются лучше, какие требуют доработки, как меняется техника со временем. Особенно в детском спорте, где группы достигают 15 человек и тренеру сложно одновременно следить за каждым спортсменом.
Команда проекта NeuroSkate (Анна Проворова, Дарья Семёнова, Людмила Гергерт, Софья Куликова, Ирина Полякова) решила проверить, как искусственный интеллект справится с анализом движений фигуристов. Исследователи выбрали шесть движений, которые проще всего определить по позе спортсмена: бильман, вращения, кораблик и несколько базовых одинарных прыжков — флип, риттбергер и лутц. Главная идея состояла в том, чтобы нейросеть могла автоматически находить фигуриста на видео, отслеживать его движения и подписывать, какой элемент выполняется.
«Звучит просто, но на практике это задача не из легких. Для обучения алгоритмов нужны большие базы данных, а их в открытом доступе почти нет. В исследованиях анализируют взрослых спортсменов, а вот видео юных фигуристов с размеченными движениями до сих пор никто не собирал», — рассказывает младший научный сотрудник Центра когнитивных нейронаук НИУ ВШЭ в Перми Анна Проворова.
Проект реализовывался вместе со Спортивной школой олимпийского резерва «Орленок» в Перми, которая предоставила данные для обучения нейросети.
«Пока фигуристы были на летнем перерыве, мы использовали записи соревнований и открытые видео. Позже удалось снять собственные кадры с тренировок, но только на телефон, без профессионального оборудования, что сказалось на качестве изображения и точности разметки», — рассказывает заведующая Центром когнитивных нейронаук НИУ ВШЭ в Перми Софья Куликова.
Распознавание движений состоит из нескольких этапов. Сначала видео разбивается на кадры, на каждом из них выделяются ключевые точки на теле фигуриста. Затем последовательность из 60 кадров с отмеченными точками передается в нейросеть, которая анализирует движения спортсмена.
На первых этапах модель тестировали в бинарной классификации: ей предлагали различать движения попарно, например риттбергер и кораблик, без добавления других элементов. В таком формате система работала стабильно, показывая точность 72%. Но как только задача усложнялась, а элементов становилось больше, система начинала ошибаться. Исследователи продолжили разметку новых видео и дообучили модель, благодаря чему спортсменов стало легче распознавать на видео.
Параллельно разработчики создали веб-приложение, в котором можно загружать тренировочные видео и анализировать статистику конкретного спортсмена. В перспективе это может стать инструментом, который поможет тренерам следить за прогрессом учеников, не пересматривая часы записей.
«Мы надеемся продолжить работу над проектом, так как есть идеи, как улучшить алгоритм: самое первоочередное — собрать большую и качественную базу данных видеозаписей спортсменов. Также есть понимание, как улучшить блок распознавания движений. Например, использовать графовые нейросети. Это очень перспективное направление. Одна из таких моделей (HD-GCN) показала впечатляющие результаты, которые были представлены на крупнейшей конференции по компьютерному зрению ICCV в 2023 году. Однако запустить ее на реальных данных проекта пока не удалось», — рассказывает Анна Проворова.
Исследование выполнено в рамках программы «Приоритет-2030».
Распространено мнение, что, чем чаще пара занимается сексом, тем сильнее каждый из партнеров доволен отношениями. Международная команда исследователей проверила этот тезис.
Ученые подтвердили природу невидимого тела, споры о котором шли с 2011 года. Это первая обнаруженная изолированная черная дыра. Объект массой в семь Солнц заметили в Млечном Пути благодаря редкому явлению — гравитационному микролинзированию, которое исказило свет далекой звезды.
Ученые давно выяснили, что запах ношеной футболки влияет на выбор мужчин прекрасным полом. Авторы нового исследования продемонстрировали, что и при выборе подруг запахи играют более существенную роль, чем визуальный ряд.
Распространено мнение, что, чем чаще пара занимается сексом, тем сильнее каждый из партнеров доволен отношениями. Международная команда исследователей проверила этот тезис.
В 2006 году исследователи из Великобритании объявили, что легендарный антикитерский механизм, древнегреческий «компьютер», мог быть всего лишь игрушкой для демонстрации астрономических явлений. Авторы нового исследования подтвердили это, построив математическую модель на основе данных своих коллег, которая показала, что шестерни устройства заклинивало при запуске. Но несмотря на полученные результаты, ученые пытаются спасти репутацию древнего чуда техники, обвинив предыдущую команду в ряде ошибок.
Примерно 41-42 тысячи лет назад на Земле произошел кратковременный сдвиг магнитных полюсов, который мог способствовать вымиранию неандертальцев, но не Homo sapiens — их выживание авторы нового исследования связали с появлением теплой одежды и добычей охры.
До 13 тысяч лет назад в Северной Америке жил вид, который ученые до недавнего времени считали волком. Компания Colossal Biosciences объявила о возрождении этого вымершего вида, но биологические детали ставят ее заявление под серьезное сомнение.
Известный американский отраслевой обозреватель Эрик Бергер взял интервью у экипажа космического корабля Boeing, из-за технических проблем которого два астронавта задержались на орбите на девять месяцев вместо одной недели. Детали, которые они озвучили, указывают на серьезные проблемы Starliner, о которых ранее умалчивали. Люди провели немало времени при глубоко нештатной температуре. При слегка другом сценарии миссии экипаж корабля мог погибнуть. Официальные заявления NASA и Boeing сразу после июньского полета к МКС, судя по интервью, были заведомо неправдивыми.
Инженеры компании Unitsky String Technologies Inc. разработали несколько вариантов транспортно-инфраструктурных комплексов, способных значительно улучшить пассажирское сообщение в городах, расположенных по обеим берегам крупных водных артерий. Обычно такие мегаполисы сталкиваются с необходимостью строительства дорогих капитальных сооружений — шоссейных мостов, что не всегда подъемно для городского бюджета. Решение белорусских инженеров куда менее ресурсоемкое. Для примера возьмем Ростов-на-Дону, где есть запрос на устойчивое сообщение между левобережной частью города с историческим центром.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии