Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Предсказуемый киберспорт: движения в кресле позволяют отличить профессионального игрока от любителя
Группа молодых ученых из Центра Сколтеха по научным и инженерным вычислительным технологиям для задач с большими массивами данных (CDISE) c помощью искусственного интеллекта определила, как движения в кресле могут выдать в киберигроке профессионала.
Методы машинного обучения успешно предсказывают мастерство игрока в 77 % случаев. Результаты работы были представлены на престижном форуме — V международной конференции IEEE по проблемам Интернета людей (IoP 2019), где получили приз за лучшую научную работу.
За последние несколько лет киберспорт прошел путь от видеоигр для школьников до целой спорт-индустрии c профессиональными командами, тренерами и большими инвестициями. Как и в любом другом спорте, кибератлеты бывают профессионалами и любителями, и понимание того, как отличить одних от других, важно для оптимизации тренировочного процесса.
Студенты-магистры из Сколтеха (Москва), МФТИ (Москва) и ГУАП (Cанкт-Петербург) под руководством профессоров Сколтеха Андрея Сомова и Евгения Бурнаева решили найти связь между эффективностью кибератлета в игре и характером его движений в кресле.
«Мы предположили, что между “стилем” движения игрока в кресле и его мастерством есть связь. В то же время было интересно посмотреть, как игроки реагируют на игровые события (когда игрок убивает, умирает, или идет перестрелка). Вряд ли профессиональные игроки и новички реагируют одинаково», — рассказывает первый автор исследования, магистрант Сколтеха Антон Смердов.
Для эксперимента были приглашены 19 игроков разных уровней: девять профессионалов и десять любителей. Мастерство игроков оценивали аналогично тому, как измеряют мастерство пилотов —наигранными часами. Всем было предложено играть в популярную видеоигру Counter-Strike: Global Offensive (CS:GO) от получаса до часа. Для сбора данных использовались акселерометр и гироскоп, интегрированные в кресло.
«Полученные данные были порезаны на трехминутные сессии, так как трех минут движений в кресле достаточно, чтобы понять поведение игрока. В то же время это увеличивает выборку для обучения алгоритмов», — поясняет Антон Смердов.
Из каждой сессии ученые извлекали паттерны, по которым можно оценивать поведение игрока: с какой частотой и интенсивностью он двигается или крутится в кресле для каждой из трех осей и как часто откидывается на спинку кресла. Суммарно для всех временных интервалов получился 31 паттерн на каждого игрока. С помощью методов статистики выделили восемь самых важных признаков и применили к ним методы машинного обучения.
Лучше всего сработал популярный метод Random Forest, продемонстрировавший семидесятисемипроценую точность при определении уровня мастерства по трехминутной сессии. Также полученные результаты показали, что профессиональные игроки в целом чаще и интенсивнее двигаются в кресле, но при этом сидят неподвижно во время перестрелок и прочих игровых событий.
Работа над проектом началась в рамках курса Introduction to Internet of Things и инициативы Киберакадемии Сколтеха и продолжается в рамках грантов программы Сколтеха STRIP, РФФИ и киберспортивного стартапа Head Kraken.
Научная группа ученых Сколтеха, занимающихся исследованиями в области определения психоэмоционального состояния кибератлетов под руководством профессоров Андрея Сомова и Евгения Бурнаева, с 2018 года применяет датчики для комплексного сбора данных, а также методы машинного обучения для изучения психологического и физического состояния игроков. Для анализа используют данные о пульсе, сопротивлении кожи, направлении взгляда, движении рук, данные об окружающей среде (температура, влажность, уровень углекислого газа), игровой телеметрии и другие.
Ученые провели эксперимент и установили, что вблизи машины черного цвета, простоявшей на солнце несколько часов, температура поднималась на 3,8 °C выше, чем у асфальта на прилегающем свободном участке.
Цифровой художник Шон Харгривз в своих концептуальных работах погружает в брутальный мир научной фантастики.
Представьте, что вы решили куда-то сходить. Выходите из дома, поворачиваете налево и проходите примерно один квартал. Внезапно становится понятно: если бы сразу повернули направо — путь занял бы намного меньше времени. Еще достаточно близко, чтобы вернуться и пойти по более короткому маршруту, но сделаете ли вы это? Скорее всего, нет, считают американские ученые, которым удалось объяснить причины такого нерационального поведения.
Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.
Изображение блазара PKS 1424+240, полученное с помощью радиоинтерферометра VLBA, напомнило астрономам легендарное «Око Саурона» из «Властелина колец» — джет, пронизывающий кольцеобразное магнитное поле объекта, устремлен к нашей планете, а сам блазар может оказаться одним из наиболее ярких источников нейтрино в космосе.
Влияет ли формат знакомства на качество последующих романтических отношений в паре? Научные данные на этот счет разнятся. Новое исследование по вопросу представила группа психологов из Польши, Австралии и Великобритании. В попытке понять, при каком сценарии удовлетворенность отношениями выше, а любовь крепче — когда двое нашли друг друга в Сети или познакомились в жизни, — ученые опросили свыше 6000 тысяч человек из разных стран.
Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.
Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.
Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет. Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии