Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Для создания квантового компьютера совместят темпоральные кристаллы и майорановские фермионы
Создав из темпорального кристалла частицу, являющуюся собственной античастицей, физики собираются сделать квантовый компьютер, который будет намного надежнее и легче других разработок.
Темпоральные кристаллы и квазичастицы, называемые майорановскими фермионами, неоднократно мелькали в новостных заголовках в последние годы. Все из-за их крайне странной природы. В итоге ученые решили, что их совмещение для создания квантового компьютера — идеальный «брак».
Теоретический союз двух удивительных феноменов предложили ученые из Национального университета Сингапура, заметившие между ними сходства, которыми можно воспользоваться в топологическом квантовом компьютере. Прежде чем мы продолжим говорить об этом феноменальном миксе, стоит разобраться в основах.
Прежде всего, темпоральные кристаллы похожи на обычные кристаллы тем, что они тоже основаны на повторяющихся единицах. Но вместо того чтобы растягиваться на три измерения в пространстве, они со временем повторяются. Очень необычна тут независимость резонанса движений частиц от постоянного источника энергии. Однако до того, как вы воскликните «Вечный двигатель!», следует знать, что темпоральные кристаллы не могут быть источником независимой энергии, так что они не нарушают никаких правил. Тем не менее эта особенность может сыграть важную роль в хранении информации, если привести кристаллы в так называемые магические состояния.
И вот тут ученым должны помочь майорановские фермионы. Существование этих частиц было предсказано 80 лет назад физиком-теоретиком Этторе Майорана. Он утверждал, что такие гипотетические элементарные частицы суть свои же античастицы. Более того, они являются типом фермионов — частиц с полуцелым значением спина. Если вкратце, то из них состоят атомы.
Почти за век исследований ученым не удалось наблюдать эти особые частицы Ферми в естественных условиях. Но современной науке известен другой феномен — электроны, чье взаимодействие создает нечто очень похожее на майорановские фермионы.
Фермионы Майораны — точнее, их квазичастичные двойники — можно заставить двигаться необычным образом во время их следования через проводник. Это «сплетенное» движение делает их идеальными кандидатами для создания топологической версии квантового компьютера. Тогда как обычная квантовая машина зависит от неопределенного состояния частицы — ее потенциального спина — для создания своего ключевого компонента, топологический квантовый компьютер, напротив, использует эти «косы».
«Грубо говоря, «коса» означает обмен положениями двух частиц, — сказал физик Цзянбин Гун в интервью Phys.org. — В реальной жизни нам известно, что существуют разные типы «кос» и что конверсия одной «косы» в другую требует определенных операций, которых нет в естественных условиях».
«Косы» не настолько хрупки, как другие квантовые состояния, что делает их очень привлекательными для использования в основе квантовых вычислений. Суть в использовании этих майорановских фермионов, чтобы построить рабочее устройство. Создание этих частиц из темпоральных кристаллов может стать очень хорошим вариантом для достижения этой цели.
Исследователи смоделировали поведение сетки частиц, действующих как темпоральные кристаллы, и направили на их грани электроны в форме квазичастиц Майорана. Воздействие на эти особые частицы заставило их действовать так, как если бы они сплетались, приведя к состояниям, которые могут стать основой для операций в универсальном квантовом компьютере.
«Сплетение темпоральных кристаллов может быть потенциально полезным для квантовых вычислений, так как мы используем их особенности временной области и тем самым получаем больше кубитов для кодирования информации», — говорит Гун.
Больше кубитов — меньше железа. Добавьте сюда процессы, наименее подверженные ошибкам, и вы получите очень выгодные и практичные топологические квантовые компьютеры на основе темпоральных кристаллов. Далее ученые собираются исследовать способы наращивания этого процесса, переместив «косы» в массив проводов для создания более сложных шаблонов.
Последние полвека темпы развития науки снижаются. В быту это пока незаметно, потому что от фундаментального открытия до его реализации в технике проходят десятки лет. Но замедление длится слишком долго, то есть вскоре мы столкнемся с замедлением развития техники в целом. Naked Science решил дать перевод видео физика и популяризатора Сабины Хоссенфельдер на эту тему. Что же не так с современной наукой и можно ли что-то исправить?
Группа астрономов изучила десятки панорамных снимков, сделанных марсоходом Curiosity в 2019 и 2021 годах, и заметила на них уникальное атмосферное явление. Перистые облака на большой высоте переливались красным, зеленым и синим цветами в лучах закатного Солнца. На Земле такие облака называют перламутровыми и на Красной планете наблюдают впервые. Ученые также обнаружили сезонность этих переливов.
«Легко ли женщине в астрофизике?», об этом мы спросили Елену Нохрину, доктора физико-математических наук, заведующего лабораторией фундаментальных и прикладных исследований релятивистских объектов Вселенной МФТИ. А еще расспросили о том, почему светится черная дыра и не схлопываются желтые карлики, есть ли другая жизнь во Вселенной и возможны ли «кротовые дыры» в космосе!
Обсерватории постоянно улавливают «мигающие» радиосигналы из глубин Вселенной. Чаще всего их источниками оказываются нейтронные звезды, которые за это и назвали пульсарами. Но к недавно обнаруженному источнику GLEAM-X J0704-37 они, по мнению астрономов, отношения не имеют.
Профессор Московского городского педагогического университета, доктор психологических наук Борис Рыжов описал феномен любви как сложную систему взаимосвязанных мотиваций, которые фиксируются на одном объекте, создавая прочную эмоциональную связь. Это объяснение помогает понять, почему любовь способна настолько глубоко влиять на все аспекты жизни человека и как происходит формирование устойчивой привязанности.
Под названием «космические лучи» скрывается не только свет, то есть фотоны, но и протоны, электроны и другие частицы. Все они летят к нам от звезд. Иногда ученые могут даже с уверенностью сказать, от каких именно. К примеру, в земную атмосферу постоянно врываются солнечные протоны. Недавно одна из обсерваторий уловила прибывшие на нашу планету электроны и позитроны с беспрецедентной энергией. Они точно «родом» не с Солнца, но у ученых есть предположения, откуда они могут быть.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Многие одинокие люди считают, что окружающие не разделяют их взглядов. Психологи из США решили проверить, так ли это на самом деле, и обнаружили общую особенность у людей с недостаточным количеством социальных связей.
Обсерватории постоянно улавливают «мигающие» радиосигналы из глубин Вселенной. Чаще всего их источниками оказываются нейтронные звезды, которые за это и назвали пульсарами. Но к недавно обнаруженному источнику GLEAM-X J0704-37 они, по мнению астрономов, отношения не имеют.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии