Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Поведение нейтрино указало на возможное решение проблемы дефицита антиматерии во Вселенной
Нейтринный детектор обнаружил небольшие различия в осцилляциях частиц нейтрино и антинейтрино, и этих различий может быть достаточно для того, чтобы объяснить доминирование вещества над антивеществом в нашей Вселенной.
С каждой частицей обычной материи соотносится соответствующая частица антиматерии, точно такая же по массе, но несущая противоположный электрический заряд. С точки зрения известных нам законов физики разницы между ними нет — это свойство называется СР-симметрией. Между тем очевидно, что во Вселенной обычная материя доминирует, а антивещества в ней практически нет.
Более того, разница между ними должна была проявиться еще на самых ранних этапах ее развития, в период бариогенезиса (10-35-10-32 секунды от Большого взрыва). Иначе равные количества вещества и антивещества взаимно уничтожили бы друг друга, и Вселенная осталась бы заполненной одними фотонами.
Эта загадка остается одной из самых актуальных фундаментальных проблем, и ученые уже десятки лет ищут механизмы возможного нарушения СР-симметрии, которые могли бы привести к аннигиляции антиматерии и сохранению обычной. Некоторые такие нарушения действительно были обнаружены в поведении кварков, однако они слишком незначительны и не могут полностью решить исходную проблему. Для этого СР-инвариантность должна нарушаться и у лептонов — куда более многочисленных частиц, включающих электроны и нейтрино.
Напомним, частицы нейтрино — невероятно мелкие и юркие, они практически не взаимодействуют с обычным веществом и могут пройти сквозь Землю и Солнце так, словно те прозрачны. Для того чтобы нейтрино как-то проявило себя, ему необходимо фактически столкнуться с ядром атома «лоб в лоб». Поэтому для их обнаружения используют большие объемы чистой воды или льда, максимально изолированные от попадания частиц извне. Лишь нейтрино, проникая внутрь, иногда взаимодействуют с ядрами, создавая новые частицы и редкие вспышки черенковского излучения, которые регистрируют сверхчувствительные фотоэлементы.
Так действует японский детектор нейтрино Super-Kamiokande, находящийся глубоко в толще гор и заполненный примерно 50 тысячами тонн воды. Для повышения частоты событий он работает с потоком частиц, которые создаются расположенным в 300 километрах источником — ускорителем J-PARC. Система используется в рамках международного эксперимента Т2К, посвященного исследованиям нейтринных осцилляций — перехода одного вида нейтрино в другой. В новой статье, опубликованной в журнале Nature, участники коллаборации Т2К представили результаты этой работы, проводившейся начиная с 2010 года. И хотя однозначных свидетельств нарушения СР-инвариантности у лептонов авторы пока не обнаружили, они нашли достаточно свидетельств, что она существует.
Дело в том, что нейтрино бывают трех видов — электронное, мюонное и тау-, причем каждая из этих частиц способна превращаться в любую. Это явление и называется осцилляциями, и теоретически они должны одинаково проходить и у нейтрино, и у парных им электронного, мюонного и тау-антинейтрино. Сталкиваясь с водой детектора, мюонное нейтрино порождает мюон, а электронное — электрон, и фотодетекторы позволяют различить эти события. Проведя такие наблюдения, ученые изменили параметры работы ускорителя и повторили их с потоком антинейтрино, сопоставив полученные результаты.
Нейтрино настолько неуловимы, что за десяток лет работы и триллионы столкновений протонов на J-PARC детектор зафиксировал в общей сложности 90 электронных нейтрино. Однако электронных антинейтрино оказалось и того меньше, всего 15. Это позволяет предположить, что осцилляции с превращением мюонных нейтрино в электронные происходят чаще, чем аналогичный переход у антинейтрино. И если для нейтрино СР-инвариантность действительно может нарушаться, то этого достаточно для объяснения проблемы барионной асимметрии Вселенной в рамках существующих моделей.
Впрочем, авторы — а их у новой статьи более 300 — подчеркивают, что результаты еще далеко не окончательны. Точный расчет показывает, что эксперименты позволяют говорить об этом лишь с уверенностью в 95 процентов — куда ниже 99,7 процента, которые обычно считаются границей, за которой можно было бы утверждать о надежно подтвержденном открытии.
Ученые из МФТИ разработали и предложили новую систему единиц для электродинамики, способную примирить два главенствующих, но исторически несовместимых подхода. Эта компромиссная система, названная авторами физико-технической (ФТ), сохраняет практическое удобство Международной системы единиц (СИ), используемой инженерами по всему миру, и в то же время отражает теоретическую стройность и симметрию гауссовой системы (СГС), предпочитаемой физиками-теоретиками.
Ученые из коллаборации LIGO, VIRGO и KAGRA впервые зафиксировали гравитационно-волновые события, указывающие на существование черных дыр второго поколения — «потомков» предыдущих слияний. Открытие позволит понять, как именно во Вселенной рождаются сверхмассивные черные дыры.
Эксперимент, устроенный в морском аквариуме в Лос-Анджелесе, продемонстрировал, что акулы и скаты, принадлежащие к пластиножаберным рыбам, могут обладать более высоким уровнем интеллекта. Значит, им необходима обогащенная среда обитания при содержании в неволе.
Ученые из МФТИ разработали и предложили новую систему единиц для электродинамики, способную примирить два главенствующих, но исторически несовместимых подхода. Эта компромиссная система, названная авторами физико-технической (ФТ), сохраняет практическое удобство Международной системы единиц (СИ), используемой инженерами по всему миру, и в то же время отражает теоретическую стройность и симметрию гауссовой системы (СГС), предпочитаемой физиками-теоретиками.
Исследователи объяснили, как цивилизация майя добивалась высокой точности в предсказании солнечных затмений на протяжении столетий. Для коррекции накапливающихся астрономических неточностей они использовали сложную систему пересекающихся календарных таблиц.
В последние годы содержание кошек дома без возможности свободного выгула все чаще преподносят как идеальную модель, которая ограждает дикую фауну от нападений и обеспечивает благополучие самих питомцев. Подобные утверждения в разных частях мира звучат от некоторых защитников природы и представителей властей. Однако группа ветеринаров из Австралии и Дании недавно раскритиковала такой подход. Ученые не спорят с тем, что кошки влияют на уязвимые экосистемы и что ограничение их свободы — действенная мера по смягчению этого эффекта. Тем не менее исследователи настаивают, что жизнь в изоляции для питомцев совсем не благо. Заявляющие обратное как минимум ошибаются, а в худшем случае намеренно вводят общественность в заблуждение.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
        Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
      Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
      Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
	        Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
  
  
  
  
  
  
  
  
Последние комментарии