Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Мозг не ищет кратчайший путь при планировании маршрута
Ученые из MIT выяснили, что наш мозг не оптимизирован для того, чтобы искать самый короткий маршрут. Вместо этого он выбирает путь, который точнее всего указывает на конечное направление.
Для компьютера планирование маршрута — одна из самых вычислительно сложных задач, а вот люди справляются с ней удивительно эффективно, причем в различных масштабах. Однако наблюдения показывают, что маршруты, которые выбирает человек, систематически отклоняются от кратчайшего пути между двумя точками, и эти расхождения до сих пор недостаточно изучены.
Чтобы узнать, почему люди не всегда идут по самому короткому маршруту, ученые из MIT вместе с коллегами из Франции, Китая и Италии проанализировали 552 478 GPS-треков от 14 380 пешеходов в двух крупных городах США — Бостоне и Сан-Франциско. Оказалось, пешеходы, как правило, выбирают не самый прямой или самый короткий путь — а тот, который точнее всего указывает на конечную точку. При этом люди тем чаще отклоняются от кратчайшего пути, чем больше было расстояние между исходной и конечной точками. Интересно, что выбранные пути статистически значимо отличаются, если поменять пункты отправления и назначения местами.
Выбор пути на основании конечного направления называют векторной навигацией, и известно, что многие животные — например, кошки, грызуны, летучие мыши — пользуются именно таким подходом при планировании маршрута. На основании результатов анализа ученые создали векторную модель навигации, которая предсказывала реальный человеческий маршрут лучше, чем модель, основанная на минимизации пройденного расстояния со стохастическими эффектами.
На первый (интуитивный) взгляд, векторная навигация и должна вести по кратчайшему пути, и это слегка сбивает с толку. Разработанная учеными модель вместо того, чтобы минимизировать пройденное расстояние, минимизировала разницу между направлением на конечную цель и направлением движения в каждой точке: и получилось, что это лучше соответствует тому, что делают люди. То есть люди как будто бы чувствуют неправильным идти сильно вбок от цели, даже если в конечном счете это даст кратчайший путь.
Поскольку результаты совпадают для двух крупных городов США с разной планировкой, ученые предполагают, что векторная навигация может быть универсальным свойством планирования пути для человека. Вероятно, векторная навигация, которая требует меньше усилий, чем вычисление кратчайшего маршрута, позволяет мозгу уделять больше энергии другим задачам. Проигрыш во времени компенсируется выигрышем в вычислительных мощностях мозга.
Статья с результатами исследования опубликована в журнале Nature Computational Science.
Термояд начнет вырабатывать электричество через 20 лет — так говорили с 1950-х, но этого все так и не происходит. Почему? В чем принципиальные сложности на этом пути? Чего добивается «Росатом» в проекте ИТЭР и почему параллельно уже начал работу по российскому термоядерному реактору ТРТ? Руководитель проектного офиса по управляемому термоядерному синтезу «Наука и инновации» госкорпорации «Росатом» Андрей Аникеев ответил на наши вопросы.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Исследователи Центра декарбонизации АПК и региональной экономики Кабардино-Балкарского государственного университета имени Х.М. Бербекова совершили фундаментальное открытие, меняющее десятилетия устоявшихся представлений о жизнедеятельности растений. Ученые доказали, что корневая система растений способна напрямую поглощать диоксид углерода (CO₂) из почвы. Это вносит кардинальные изменения в понимание глобального углеродного цикла.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Недавно интернет взорвался заголовками: «Симуляция Вселенной невозможна», «Новое исследование полностью опровергает теорию симуляции». Поводом стала статья, авторы которой вознамерились доказать, что мы не живем внутри компьютера. Naked Science объясняет, что не так с этой новостью и можно ли на самом деле доказать, что «матрицы не существует».
Термояд начнет вырабатывать электричество через 20 лет — так говорили с 1950-х, но этого все так и не происходит. Почему? В чем принципиальные сложности на этом пути? Чего добивается «Росатом» в проекте ИТЭР и почему параллельно уже начал работу по российскому термоядерному реактору ТРТ? Руководитель проектного офиса по управляемому термоядерному синтезу «Наука и инновации» госкорпорации «Росатом» Андрей Аникеев ответил на наши вопросы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии