Ученые создали персональный пищевой компьютер

Специалисты из Массачусетского технологического института разработали систему автоматического выращивания растений на основе машинного обучения.

2 429

Выбор редакции

Выращивание сельскохозяйственных культур на открытых пространствах может осложняться глобальными изменениями климата и инвазивными видами, в том числе активностью насекомых-вредителей. Одним из методов повышения устойчивости растений служит селекция путем генетических модификаций. Однако это требует полной расшифровки генома и является трудоемким. В качестве альтернативы выступает внедрение теплиц, позволяющих увеличить объем продукта при снижении занимаемой земли, в частности вертикальных ферм. В этом случае посадка семян осуществляется в специальном многоэтажном помещении, при этом солнечный свет нередко заменяется искусственным, что ускоряет рост.

 

Иная концепция заключается в построении систем с контролируемым выращиванием. По этой схеме реализован персональный пищевой компьютер (Personal Food Computer) OpenAg, прототип которого американские инженеры представили в 2015 году. Первоначально он включал себя металлический контейнер, механические и электронные компоненты которого — насосы для подачи удобрений и воды, светодиоды, датчики — обеспечивали тонкую настройку внутреннего климата. Кроме того, разработчики сконструировали более массивную и сегментированную версию системы, Food Server, — в каждой ячейке поддерживались разные условия, а каркасом для нее служил грузовой контейнер.

 

Конструкция прототипа предполагала ручную настройку параметров. Но в 2016 году авторы начали сотрудничество с американской компанией Sentient Technologies, которая занимается разработками в области машинного обучения. Участники проекта интегрировали алгоритмы машинного зрения с OpenAg, что позволило автоматизировать процессы выращивания. В зависимости от целей, новая система параллельно анализировала состояние саженцев в нескольких сегментах и при необходимости корректировала климатические условия. В будущем такая теплица может значительно упростить промышленное культивирование растений, например, выращивание «мексиканского» авокадо вне тропических регионов.

 

Также ученым удалось оптимизировать компьютерный алгоритм для получения растений с заданными свойствами. В частности, систему обучили варьировать уровень определенных ароматических соединений в базилике (Ócimum) — травы этого рода являются одними из наиболее быстрорастущих, что облегчает проверку гипотез, а также широко применяются в пищевой промышленности. Испытания показали, что в перспективе при непрерывной работе машина могла увеличить долю таких веществ в двух образцах на 674–895 процентных пунктов. Примечательно, что алгоритм также освоил культивирование с учетом принципа массы-вкуса — отрицательной корреляции между этими параметрами.

 

Отмечается, что, в отличие от аналогов, сборка представленной системы может осуществляться самостоятельно: алгоритм имеет открытый исходный код, а инструкции опубликованы на GitHub и странице проекта.

 

Об испытаниях персонального пищевого компьютера пишет Fast Company.

 

Ранее похожую систему показали канадские исследователи. «Умная» теплица является портативной и имеет только одну секцию.

 

Пример работы машинного зрения в OpenAg / ©Open Agriculture Initiative
2 429

Подпишись на нашу рассылку лучших статей и получи журнал бесплатно!


Комментарии
Аватар пользователя Сергей Блинов
8 ч
Ещё шизофрения может быть связана с паразитными...
Аватар пользователя AlexBran
9 ч
Канал гика, помешанного на технологиях, гаджетах, и...
Аватар пользователя AlexBran
9 ч
Канал гика, помешанного на технологиях, гаджетах, и...
Комментарии

Plain text

  • Адреса страниц и электронной почты автоматически преобразуются в ссылки.
  • Разрешённые HTML-теги: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd> <br> <iframe> <embed> <br/>
  • Строки и параграфы переносятся автоматически.

Comment text

  • Адреса страниц и электронной почты автоматически преобразуются в ссылки.
  • Разрешённые HTML-теги: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd> <br> <br/>

Быстрый вход

или зарегистрируйтесь, чтобы отправлять комментарии
Вы сообщаете об ошибке в следующем тексте:
Нажмите Отправить ошибку