Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Квантовые компьютеры могут использовать в машинном обучении
Международная группа ученых рассказала о будущем машинного обучения.
Обычно мы рассматриваем информацию как некий абстрактный или виртуальный объект. Однако храниться эта информация должна на физическом носителе. Поэтому работа устройств, предназначенных для ее обработки, регулируется законами физики. Физические пределы способности машин к обучению также подчиняются этим законам. Самая известная физическая теория – квантовая, и при определении абсолютных пределов способностей компьютера к обучению нужно обращаться именно к ней.
Квантовый алгоритм – это многоступенчатая процедура, выполняемая на квантовом компьютере для решения той или иной проблемы, например поиска в базе данных. Программное обеспечение для квантового машинного обучения использует квантовые алгоритмы для обработки информации, и делает это способом, недоступным для классического компьютера.
Это открывает совершенно новые возможности и перспективы, которые могут превзойти самые известные классические алгоритмы, использующиеся в машинном обучении. Эффект, которого удается достичь с помощью квантовых компьютеров, называется «квантовым ускорением машинного обучения».
Методы машинного обучения используют математические алгоритмы для поиска определенных паттернов в больших массивах данных. Машинное обучение широко используется в биотехнологиях, фармацевтике, практической физике и многих других областях. Благодаря способности адаптироваться к новым данным, машинное обучение сильно превосходит способности людей. Несмотря на это, с некоторыми сложными задачами машинное обучение пока справиться не может. Ожидается, что квантовое ускорение станет возможным для множества задач машинного обучения, начиная от оптимизации и заканчивая глубинным обучением нейронных сетей.
В статье, опубликованной в журнале Nature, международная группа ученых под руководством сотрудника Сколтеха Якоба Биамонте (Jacob Biamonte) рассказывает о том, какие шаги надо предпринять, чтобы квантовое ускорение машинного обучения стало возможным на практике. Согласно мнению ученых квантовое машинное обучение может увеличить скорость и точность ряда базовых алгоритмов классического машинного обучения.
Дело в том, многие модели классического машинного обучения (в частности, глубинное обучение) основаны на классической симуляции систем, состоящих из большого количества двухуровневых подсистем (каждая из таких подсистем может находиться в одном из двух состояний). У этой математической конструкции есть прямой физический аналог — спиновые системы Изинга, хорошо известные в квантовой и статистической физике. Квантовая механика позволяет увеличить производительность систем Изинга (т.н. больцмановских машин или машин глубинного обучения).
Возможность использования квантовых компьютеров в машинном обучении привлекает в последнее время все больше внимания на фоне быстрорастущей мощности квантовых компьютеров. Эта возможность оказалась довольно неожиданной для физиков. Многие ученые полагают, что одной из основных задач квантового компьютера будет моделирование процессов химической физики для фармацевтической промышленности с целью открытия новых лекарств.
Сейчас становится ясно, что определенные модели машинного обучения, в особенности глубинного обучения, имеют свой квантовый эквивалент. Квантовое машинное обучение может быть использовано в тандеме с уже известными в квантовой теории информации методами, применимыми в квантовой химии. Это откроет новые возможности в наступающей эре квантовых технологий.
«Наша команда дискутировала по скайпу до поздней ночи, к какой области науки отнести наше исследование. Мы многократно переписывали нашу статью, меняли основную мысль, в конечном счете написали три версии за 8 месяцев, не имеющие между собой ничего общего, кроме названия – в итоге отправили конечный вариант в журнал Nature», – рассказывает Якоб Биамонте.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Команда психолингвистов Центра языка и мозга НИУ ВШЭ обнаружила, что у подростков в возрасте 15–18 лет навыки фонологической обработки продолжают влиять на скорость чтения текстов. Это открытие опровергает убеждение, что к подростковому возрасту эти навыки уже не играют значимой роли в беглости чтения.
Новые материалы позволяют построить атомные реакторы и для полетов в космос, и для получения зеленой и более дешевой электроэнергии на Земле. Технологии, лежащие в основе их создания, помогают даже выращивать биологические ткани для замены поврежденных. Мы поговорили обо всем этом с научным руководителем направления «Материалы и технологии» Госкорпорации «Росатом», первым заместителем директора частного учреждения «Наука и инновации» Алексеем Дубом.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Зоологи из Университета Нового Южного Уэльса выяснили, что слоны Ботсваны реагируют на жужжание пчел гораздо спокойнее, чем их сородичи в Восточной Африке. Это открытие осложняет внедрение экологичных методов защиты урожая: то, что пугает животных в Кении, здесь может не сработать.
Новые материалы позволяют построить атомные реакторы и для полетов в космос, и для получения зеленой и более дешевой электроэнергии на Земле. Технологии, лежащие в основе их создания, помогают даже выращивать биологические ткани для замены поврежденных. Мы поговорили обо всем этом с научным руководителем направления «Материалы и технологии» Госкорпорации «Росатом», первым заместителем директора частного учреждения «Наука и инновации» Алексеем Дубом.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно

Последние комментарии