• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
03.06.2017, 08:14
Редакция Naked Science
809

Глубокую нейросеть научили воображению

Специалисты из японской компании ATR Computational Neuroscience Laboratories научили глубокую нейросеть предсказывать неизвестное психическое содержание на основании томограмм.

untitled-1
©Wikipedia / Автор: Lampronia Auxilius

Поскольку анализ мозговой активности является трудоемким и не всегда обеспечивает высокую надежность диагностики, ученые работают над его автоматизацией. Прошлые эксперименты показали, что существующие алгоритмы машинного обучения позволяют создавать искусственные нейросети, которые могут реконструировать увиденное и воображаемое человеком с помощью снимков, сделанных путем функциональной магнитно-резонансной томографии (фМРТ). Но, как правило, такие декодеры не способны предсказать психическое содержание, соответствующее незнакомым стимулам. Это накладывает на технологию фундаментальное ограничение, делая нейросеть зависимой от тренировок.

 

Авторы новой работы разработали глубокую нейросеть, которая позволяет воспроизводить психическое содержание несмотря на сравнительную новизну стимулов. На первом этапе ученые обследовали пятерых человек — вместо большой выборки они согласно современным протоколам поведенческих МРТ-экспериментов привлекли хорошо подготовленных испытуемых. Находясь в томографе, они просматривали две группы изображений из базы ImageNet: 1200 из 150 категорий (например, «леопарды») и, в качестве контроля, 50 отдельных снимков. Затем им показывали список слов, одно из которых выделялось, — в течение 15 секунд участники должны были вызывать соответствующие ему зрительные образы.

 

Глубокую нейросеть научили воображению – иллюстрация к материалу на Naked Science

Порядок обучения и тестирования глубокой нейросети / ©Tomoyasu Horikawa et al., Nature Communications, 2017

 

После этого ученые создали компьютерный алгоритм из 13 слоев, каждый из которых был редуцирован и описывал только около одной тысячи признаков. Нейросеть включала в себя восемь сверточных слоев (CNN), три модели HMAX, одну GIST, а также слой SIFT+BoF, широко используемый в машинном зрении. Сперва система тренировалась в признаковом описании более 100 тысяч изображений из 15 322 категорий. Причем со стимулами, которые задействовались в эксперименте с людьми, знакомили только слои HMAX и SIFT+BoF (одна тысяча фотографий из 150 категорий). Отдельно нейросеть составляла описание признаков на основании томограмм. Таким образом алгоритм освоил анализ разных визуальных данных.

 

Наконец, авторы проверили, способна ли нейросеть предсказать психическое содержание на основании томограмм при условии, что большинству ее «нейронам» изначально неизвестны вызвавшие его стимулы. Результаты показали, что система во многом гомологична живому мозгу. Так, ее слои хорошо прогнозировали активность различных участков зрительной коры (в работе оценивали 12 областей, свазанных с распознаванием, включая парагиппокампальную область мест (PPA) и другие). Кроме того, механизм предсказания соответствовал принципу функциональной иерархии: особенно хорошо прогнозы высоких и низких уровней системы совпадали с реакцией высших и глубоких слоев мозга.

 

По мнению ученых, полученные данные могут использоваться в моделировании живых нейронных сетей и автоматизации диагностики. Также расширение функциональности таких алгоритмов позволяет рассматривать их как потенциальную основу искусственного интеллекта.

 

Подробности работы представлены в журнале Nature Communications.

 

Ранее исследователи адаптировали метод МРТ к визуализации экспрессии генов.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
12 ноября, 10:47
Максим Абдулаев

Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.

13 ноября, 17:09
ФизТех

Ученые из МФТИ и Национального исследовательского центра «Курчатовский институт» создали первую в своем роде полную классификацию конических сингулярностей в геометрии Минковского. Это фундаментальное достижение в математической физике заполняет пробел, существовавший в общей теории относительности более 60 лет.

13 ноября, 14:02
Адель Романова

Экзопланета K2-18 b недавно прославилась благодаря обнаружению в ее атмосфере гипотетических продуктов жизнедеятельности фитопланктона. В это трудно поверить, в том числе потому, что ее родительская звезда — красный карлик, а такие звезды известны своими экстремальными вспышками. Новые наблюдения показали, что K2-18 отличается необычным спокойствием.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

12 ноября, 10:47
Максим Абдулаев

Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.

9 ноября, 15:00
Анатолий Глянцев

Недавно интернет взорвался заголовками: «Симуляция Вселенной невозможна», «Новое исследование полностью опровергает теорию симуляции». Поводом стала статья, авторы которой вознамерились доказать, что мы не живем внутри компьютера. Naked Science объясняет, что не так с этой новостью и можно ли на самом деле доказать, что «матрицы не существует».

25 октября, 10:40
Любовь С.

Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.

8 ноября, 18:29
Адель Романова

По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.

24 октября, 14:02
РТУ МИРЭА

В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно