Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В Сколтехе научили искусственный интеллект определять вязкость нефти
Группа ученых из Сколтеха разработала алгоритмы машинного обучения, позволяющие научить искусственный интеллект определять вязкость нефти методом ядерного магнитного резонанса. Новый способ может использоваться нефтяными компании и даже в других отраслях, в которых важно определять свойства вещества по косвенным параметрам.
Исследование опубликовано в журнале Energy and Fuels. Вязкость – важный параметр для нефти и продуктов ее переработки. Он оказывает влияние и на ее добычу и процессы дальнейшей обработки, а также необходим для понимания динамики и моделирования процессов, происходящих в месторождениях. Стандартные методы определения и мониторинга вязкости – дорогие, занимают много времени, а иногда и невыполнимы технически.
Свойства вещества можно определять с помощью ядерного магнитного резонанса (ЯМР), метода основанного на способностях вещества поглощать и излучать электромагнитную энергию. Химически нефть неоднородна и представляет собой смесь различных углеводородов, поэтому, интерпретировать результаты ЯМР крайне сложно.
Группа ученых из Сколтеха, Университета Калгари (Канада) и Университета Кертин (Австралия) применили к данным ЯМР алгоритмы машинного обучения. Модель, обученная на ЯМР данных различных видов нефти из месторождении Канады и США, смогла точно предсказывать вязкость, что подтверждалось результатами лабораторных исследований.
По словам одного из руководителей исследования профессора Центра добычи углеводородов Сколтеха Дмитрия Коротеева, их работа иллюстрирует то, как машинное обучение может помочь изучать свойства материалов не напрямую, а по косвенным измерениям. В частности, можно определять вязкость не по лабораторным тестам с использованием вискозиметра, а с помощью ЯМР-измерений. В практическом плане это дает возможность получить информацию о нефти прямо в скважине, без подъема образцов на поверхность и тестирования в лаборатории.
«Удивительно, но здесь машинное обучение работает точнее классических корреляций, – комментирует профессор Коротеев. – Экспериментальные данные прямых и косвенных измерений, которые были у нас в распоряжении, послужили хорошей обучающей выборкой для алгоритмов машинного обучения. Тесты алгоритмов показали хорошую обобщающую способность и отсутствие переобучения».
Особенно интересна высокая точность моделей машинного обучения в работе с образцами сверхтяжелой нефти и битума. Из-за сложного химического состава взаимосвязь между параметрами ЯМР и вязкостью для такого типа веществ не определена. Поэтому в эмпирических моделях требуется проведение дополнительных измерений, которые сложно проводить в полевых условиях. В случае машинного обучения такие измерения не требуются.
Ученые утверждают, что область применения технологии не ограничивается только нефтедобывающей отраслью. Существует много примеров, где достать образец материала на тестирование очень сложно и проведение измерений косвенных параметров – хорошая альтернатива. Например, в пищевом кластере можно определять качество фруктов без разрезания, или в сельском хозяйстве — оценивать свойства почв сразу на больших площадях.
Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.
Несмотря на отмену попытки «экономичной» ловли первой ступени, шестой испытательный полет Starship был успешным. Корабль — вторая ступень системы впервые продемонстрировала возможность маневра на орбите. Первая ступень после приводнения неожиданно для всех смогла пережить два взрыва, не утратив плавучесть. Среди наблюдавших за испытанием был Дональд Трамп.
Международная команда специалистов во главе с сотрудниками Центра математического моделирования в разработке лекарств Первого МГМУ имени И. М. Сеченова выявила наиболее перспективные направления для исследований в области лечения аутоиммунных заболеваний. Команда первой провела систематический обзор для поиска всех опубликованных в научных работах математических моделей аутоиммунных патологий и выявила недостаток моделей, которые могут значительно ускорить разработку новых лекарств.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Принято считать, что естественный спутник Земли возник в результате ее столкновения с другой планетой, но к этой версии есть вопросы. Теперь ученые предложили рассмотреть сценарий возможного захвата Луны притяжением Земли из пролетавшей мимо двойной системы.
Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.
Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии