• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
03.11.2020, 11:12
Сколтех
471

В Сколтехе научили искусственный интеллект определять вязкость нефти

❋ 4.1

Группа ученых из Сколтеха разработала алгоритмы машинного обучения, позволяющие научить искусственный интеллект определять вязкость нефти методом ядерного магнитного резонанса. Новый способ может использоваться нефтяными компании и даже в других отраслях, в которых важно определять свойства вещества по косвенным параметрам.

В Сколтехе научили искусственный интеллект определять вязкость нефти / ©www.sonar2050.org / Автор: Godefridus Victorinus

Исследование опубликовано в журнале Energy and Fuels. Вязкость – важный параметр для нефти и продуктов ее переработки. Он оказывает влияние и на ее добычу и процессы дальнейшей обработки, а также необходим для понимания динамики и моделирования процессов, происходящих в месторождениях. Стандартные методы определения и мониторинга вязкости – дорогие, занимают много времени, а иногда и невыполнимы технически.

Свойства вещества можно определять с помощью ядерного магнитного резонанса (ЯМР), метода основанного на способностях вещества поглощать и излучать электромагнитную энергию. Химически нефть неоднородна и представляет собой смесь различных углеводородов, поэтому, интерпретировать результаты ЯМР крайне сложно.

Группа ученых из Сколтеха, Университета Калгари (Канада) и Университета Кертин (Австралия) применили к данным ЯМР алгоритмы машинного обучения. Модель, обученная на ЯМР данных различных видов нефти из месторождении Канады и США, смогла точно предсказывать вязкость, что подтверждалось результатами лабораторных исследований.

По словам одного из руководителей исследования профессора Центра добычи углеводородов Сколтеха Дмитрия Коротеева, их работа иллюстрирует то, как машинное обучение может помочь изучать свойства материалов не напрямую, а по косвенным измерениям. В частности, можно определять вязкость не по лабораторным тестам с использованием вискозиметра, а с помощью ЯМР-измерений. В практическом плане это дает возможность получить информацию о нефти прямо в скважине, без подъема образцов на поверхность и тестирования в лаборатории.

«Удивительно, но здесь машинное обучение работает точнее классических корреляций, — комментирует профессор Коротеев. — Экспериментальные данные прямых и косвенных измерений, которые были у нас в распоряжении, послужили хорошей обучающей выборкой для алгоритмов машинного обучения. Тесты алгоритмов показали хорошую обобщающую способность и отсутствие переобучения».

Особенно интересна высокая точность моделей машинного обучения в работе с образцами сверхтяжелой нефти и битума. Из-за сложного химического состава взаимосвязь между параметрами ЯМР и вязкостью для такого типа веществ не определена. Поэтому в эмпирических моделях требуется проведение дополнительных измерений, которые сложно проводить в полевых условиях. В случае машинного обучения такие измерения не требуются.

Ученые утверждают, что область применения технологии не ограничивается только нефтедобывающей отраслью. Существует много примеров, где достать образец материала на тестирование очень сложно и проведение измерений косвенных параметров – хорошая альтернатива. Например, в пищевом кластере можно определять качество фруктов без разрезания, или в сельском хозяйстве — оценивать свойства почв сразу на больших площадях. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Сколковский институт науки и технологий — негосударственный технологический университет, расположенный в инновационном центре Сколково. Институт был создан в 2011 году при поддержке Массачусетского технологического института. Модель института предусматривает тесную интеграцию технологического образования, исследовательской работы и предпринимательских навыков. Институт ведёт обучение по программам магистратуры и PhD, рабочий язык — английский.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
22 декабря, 09:20
Игорь Байдов

Согласно научным данным, на Земле живут 20 квадриллионов муравьев, что составляет примерно 2,5 миллиона муравьев на каждого человека. Ученые давно спорят, почему эти насекомые стали одними из самых многочисленных существ по числу особей. Авторы нового исследования, похоже, нашли ключ к разгадке.

22 декабря, 11:17
ПНИПУ

С началом отопительного сезона воздух в помещениях становится критически сухим. Это не просто временный дискомфорт, а серьезный фактор, который незаметно, но постоянно ослабляет наши защитные силы. Страдают также предметы интерьера, растения и домашние животные, а статическое электричество становится постоянным спутником. Вместе с экспертом ПНИПУ разбираемся, как сухой воздух влияет на наш организм и стоит ли с ним бороться.

22 декабря, 17:33
ФизТех

Российские ученые разработали модель, которая показывает, как перераспределяются заряды внутри структуры металл / графен в контакте с электролитом. Она поможет предсказывать электрохимические свойства таких гетероструктур, что важно для развития электрокатализа и электрохимических биосенсоров.

19 декабря, 15:22
Андрей Серегин

Экологическое состояние морей, омывающих развитые и развивающиеся страны, — давняя проблема, о которой говорят ученые. Авторы нового исследования выявили в Средиземном море пещеры с рекордным количеством мусора.

19 декабря, 20:02
Evgenia Vavilova

Исследователи доказали, что влияние больших сделок на рынок описывается квадратичной зависимостью. Основой для анализа стали данные Токийской биржи.

22 декабря, 09:20
Игорь Байдов

Согласно научным данным, на Земле живут 20 квадриллионов муравьев, что составляет примерно 2,5 миллиона муравьев на каждого человека. Ученые давно спорят, почему эти насекомые стали одними из самых многочисленных существ по числу особей. Авторы нового исследования, похоже, нашли ключ к разгадке.

8 декабря, 13:09
Александр Березин

С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.

17 декабря, 14:19
Игорь Байдов

На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.

29 ноября, 12:42
Александр Березин

Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно