• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
06.07.2020
ФизТех
1 956

Машинное обучение поможет выращивать искусственные органы

4.8

Ученые из МФТИ совместно с коллегами из Института системного программирования и Института глазных исследований имени Чарльза Шепенса Гарвардской школы медицины (США) разработали нейросеть, способную распознавать ткани формирующейся сетчатки еще до ее окончательной дифференцировки. Для этого алгоритму, в отличие от человека, не требуется дополнительной модификации клеток. Это позволяет применять метод при выращивании сетчатки для пересадки.

Анализ стволовых клеток / ©depositphotos /Пресс-служба МФТИ / Автор: Никита Тарасов

Результаты опубликованы в журнале Frontiers in Cellular Neuroscience. В многоклеточных организмах каждый орган и тип тканей состоит из клеток, имеющих разные функции и свойства. Эти функции они приобретают в процессе развития. В самом начале все клетки одинаковые, но они потенциально способны создавать все типы клеток зрелого организма, в этот период времени такие клетки называются стволовыми.

Когда в некоторых из них начинают синтезироваться белки, работающие в определенных тканях, происходит дифференцировка и специализация клеток. После этого группы клеток образуют разные ткани и органы. Наиболее современным подходом для воспроизведения процесса развития различных тканей в пробирке является технология дифференцировки в трехмерных клеточных агрегатах — органоидах. Данная технология уже показала свою эффективность для исследования развития сетчатки, мозга, внутреннего уха, кишечника, поджелудочной железы и многих других тканей.

Благодаря тому, что процесс дифференцировки по данной технологии основывается на естественных механизмах развития, получаемая ткань обладает значительным сходством с естественным органом. Природа некоторых этапов дифференцировки имеет случайный характер, что приводит к значительному изменению количества клеток с определенной функцией даже среди искусственных органов в одной партии, не говоря о разных клеточных линиях.

Это значит, что для воспроизводимости экспериментов и, как следствие, для наибольшей надежности в клинических применениях при каждой дифференцировке необходимо уметь определять, какие клетки специализировались, а какие — нет. Для определения дифференцированных клеток при работе с тканями специалисты используют флуоресцентные белки — ген светящегося белка добавляют в ДНК клеток, в результате чего последние начинают его синтезировать, когда проходят нужную стадию развития.

К сожалению, этот чувствительный, специфичный и удобный для количественной оценки метод не подходит для производства клеток для трансплантации или моделирования наследственных заболеваний генетической природы. Именно поэтому ученые в данной работе предложили альтернативный подход для анализа — на основании структуры самой ткани.

На сегодняшний день нет надежных и объективных критериев, чтобы предсказать качество дифференцировки клеток. Для решения проблемы отбора лучших тканей сетчатки для дальнейшей трансплантации, скрининга лекарственных препаратов или моделирования заболеваний ученые решили использовать методы нейронных сетей и искусственного интеллекта.

«Одним из основных направлений деятельности нашей лаборатории является применение методов биоинформатики, машинного обучения и искусственного интеллекта для решения прикладных задач в области генетики и молекулярной биологии. Данная разработка — как раз на стыке наук. В ней классические для Физтеха инструменты нейронных сетей применены для очень значимой прикладной биомедицинской проблемы — предсказания дифференцировки в сетчатку из стволовых клеток. Сетчатка человека имеет крайне ограниченный потенциал к регенерации.

Это значит, что любая прогрессирующая потеря нейронов, например, при глаукоме, неизбежно приводит к полной слепоте. Сейчас врачам практически нечего предложить таким пациентам, кроме как начинать учить таблицы Брайля. Наша работа делает биомедицину на шаг ближе к созданию клеточной терапии для заболеваний сетчатки глаза, что позволит не только предотвратить прогрессию заболевания, но и вернуть больным уже утраченное зрение», — объясняет руководитель лаборатории геномной инженерии МФТИ Павел Волчков.

Авторы статьи обучили нейронную сеть (компьютерный алгоритм, названный так по аналогии с работой человеческих нейронов в мозге) находить ткани развивающейся сетчатки на основании фотографий с простого светового микроскопа. Сначала они попросили экспертов идентифицировать на 1200 изображениях дифференцированные клетки при помощи точного метода с использованием флуоресцентного репортера.

Нейросеть обучили на 750 изображениях, еще 150 были использованы для валидации и 250 — для тестов. После проверки всех предсказаний оказалось, что люди определяли дифференцированные клетки с точностью около 67 процентов, в то время как нейросеть имела точность 84 процента.

«Наши результаты показывают, что критерии отбора тканей сетчатки на ранней стадии субъективны и зависят от эксперта, который принимает решение. При этом морфология (то есть структура) самой ткани даже на очень ранней стадии позволяет прогнозировать дифференцировку сетчатки. И программа, в отличие от человека, может извлечь эту информацию.

С учетом того, что этот подход не требует сложных изображений, флуоресцентных репортеров или красителей для анализа, его легко внедрить. Это позволяет сделать еще один шаг в сторону создания клеточных терапий для таких заболеваний сетчатки, как глаукома и макулярная дистрофия, которые сейчас практически неминуемо приводят к слепоте. Кроме того, этот подход может быть перенесен не только на другие клеточные линии, но и на человеческие искусственные органы», — дополняет Евгений Кегелес, сотрудник лаборатории терапии орфанных заболеваний МФТИ.

Московский физико-технический институт — ведущий технический вуз страны, который входит в престижные рейтинги лучших университетов мира. Здесь обучают фундаментальной и прикладной физике, математике, информатике, химии, биологии, компьютерным технологиям и другим естественным и точным наукам.

Сегодня Физтех – это передовой научный центр. В МФТИ организована научная деятельность, посвященная в том числе проблемам старения и возрастных заболеваний, прикладной и фундаментальной физике, двумерным материалам, квантовым технологиям, искусственному интеллекту, геномной инженерии, арктическим и космическим исследованиям. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
19 июня
Анатолий Глянцев

Полвека назад советский физик-теоретик придумал способ улавливать гравитационные волны высоких частот, недоступные даже современным детекторам. Эти неуловимые волны многое рассказали бы о Вселенной. Naked Science выяснил, можно ли превратить блестящую теорию в головокружительную практику.

Вчера, 12:30
Юлия Трепалина

Дикие шимпанзе поедают части деревьев и травы с лекарственными свойствами в целях самолечения. К такому выводу пришли ученые по результатам наблюдений за приматами в природе и последующего анализа употребляемых ими растений.

Позавчера, 12:55
Игорь Байдов

Министерство обороны Австралии отчиталось об успешном испытании первого в стране оружия направленной энергии, которое в основном будут использовать против беспилотников. По заверениям представителей ведомства, новый лазер сможет «прожигать сталь» и выводить из строя быстродвижущиеся объекты. Еще он обладает точностью, позволяющей поразить монету номиналом 10 австралийских центов.

18 июня
Сколтех

Ученые из Сколтеха, Цзилиньского университета и Центра передовых исследований в области науки и технологий высокого давления в Пекине (HPSTAR), а также их немецкие коллеги синтезировали и исследовали новый тип сверхпроводника с высоким содержанием водорода — супергидрид лантана типа A15 с формулой La4H23. Новый материал обладает сверхпроводимостью при температуре ниже −168 градусов и давлении в 1,2 миллиона атмосфер.

19 июня
ПНИПУ

Шаровая молния — выдумка или реальное явление, что такое темная материя и как она влияет на массу Вселенной? Для чего предназначены узоры на кончиках пальцев? Как мы «заражаемся» зевотой и почему мы чихаем, глядя на солнце? Отчего правшей больше, чем левшей и что нужно, чтобы сработал эффект плацебо? Об этом рассказали ученые Пермского Политеха.

19 июня
Александр Березин

Популярная гипотеза о доставке большого объема легких элементов на древнюю Землю с кометами и астероидами получила существенный удар: «импорт» был весьма невелик. Значит, вода и многое другое, необходимое для возникновения жизни, никогда не исчезали с лица нашей планеты.

24 мая
Игорь Байдов

С помощью космических и наземных телескопов международная команда астрономов открыла похожий на нашу планету мир в так называемой зоне обитаемости, позволяющей воде существовать на поверхности тела в жидком состоянии. По космическим меркам экзопланета находится достаточно близко к Земле и, вероятно, представляет собой скалистый мир с благоприятным для жизни климатом. Подобные миры астрономы открывают крайне редко.

27 мая
Андрей

Европейские гляциологи, используя первые снимки Восточной Антарктиды 1937 года, а также фотографии середины XX века и современные спутниковые данные, отследили, как менялись ледники в этом регионе на протяжении 85 лет.

10 июня
Александр Березин

Исследователи из США выяснили, что примерно два миллиона лет назад Солнечная система захватила хвост облака холодного межзвездного газа. В результате гелиосфера сильно сжалась, дав галактическим лучам свободно облучать все планеты системы. Это должно было вызвать и серьезные проблемы с климатом.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно