• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
06.07.2020
ФизТех
1 852

Машинное обучение поможет выращивать искусственные органы

4.8

Ученые из МФТИ совместно с коллегами из Института системного программирования и Института глазных исследований имени Чарльза Шепенса Гарвардской школы медицины (США) разработали нейросеть, способную распознавать ткани формирующейся сетчатки еще до ее окончательной дифференцировки. Для этого алгоритму, в отличие от человека, не требуется дополнительной модификации клеток. Это позволяет применять метод при выращивании сетчатки для пересадки.

Анализ стволовых клеток / ©depositphotos /Пресс-служба МФТИ

Результаты опубликованы в журнале Frontiers in Cellular Neuroscience. В многоклеточных организмах каждый орган и тип тканей состоит из клеток, имеющих разные функции и свойства. Эти функции они приобретают в процессе развития. В самом начале все клетки одинаковые, но они потенциально способны создавать все типы клеток зрелого организма, в этот период времени такие клетки называются стволовыми.

Когда в некоторых из них начинают синтезироваться белки, работающие в определенных тканях, происходит дифференцировка и специализация клеток. После этого группы клеток образуют разные ткани и органы. Наиболее современным подходом для воспроизведения процесса развития различных тканей в пробирке является технология дифференцировки в трехмерных клеточных агрегатах — органоидах. Данная технология уже показала свою эффективность для исследования развития сетчатки, мозга, внутреннего уха, кишечника, поджелудочной железы и многих других тканей.

Благодаря тому, что процесс дифференцировки по данной технологии основывается на естественных механизмах развития, получаемая ткань обладает значительным сходством с естественным органом. Природа некоторых этапов дифференцировки имеет случайный характер, что приводит к значительному изменению количества клеток с определенной функцией даже среди искусственных органов в одной партии, не говоря о разных клеточных линиях.

Это значит, что для воспроизводимости экспериментов и, как следствие, для наибольшей надежности в клинических применениях при каждой дифференцировке необходимо уметь определять, какие клетки специализировались, а какие — нет. Для определения дифференцированных клеток при работе с тканями специалисты используют флуоресцентные белки — ген светящегося белка добавляют в ДНК клеток, в результате чего последние начинают его синтезировать, когда проходят нужную стадию развития.

К сожалению, этот чувствительный, специфичный и удобный для количественной оценки метод не подходит для производства клеток для трансплантации или моделирования наследственных заболеваний генетической природы. Именно поэтому ученые в данной работе предложили альтернативный подход для анализа — на основании структуры самой ткани.

На сегодняшний день нет надежных и объективных критериев, чтобы предсказать качество дифференцировки клеток. Для решения проблемы отбора лучших тканей сетчатки для дальнейшей трансплантации, скрининга лекарственных препаратов или моделирования заболеваний ученые решили использовать методы нейронных сетей и искусственного интеллекта.

«Одним из основных направлений деятельности нашей лаборатории является применение методов биоинформатики, машинного обучения и искусственного интеллекта для решения прикладных задач в области генетики и молекулярной биологии. Данная разработка — как раз на стыке наук. В ней классические для Физтеха инструменты нейронных сетей применены для очень значимой прикладной биомедицинской проблемы — предсказания дифференцировки в сетчатку из стволовых клеток. Сетчатка человека имеет крайне ограниченный потенциал к регенерации.

Это значит, что любая прогрессирующая потеря нейронов, например, при глаукоме, неизбежно приводит к полной слепоте. Сейчас врачам практически нечего предложить таким пациентам, кроме как начинать учить таблицы Брайля. Наша работа делает биомедицину на шаг ближе к созданию клеточной терапии для заболеваний сетчатки глаза, что позволит не только предотвратить прогрессию заболевания, но и вернуть больным уже утраченное зрение», — объясняет руководитель лаборатории геномной инженерии МФТИ Павел Волчков.

Авторы статьи обучили нейронную сеть (компьютерный алгоритм, названный так по аналогии с работой человеческих нейронов в мозге) находить ткани развивающейся сетчатки на основании фотографий с простого светового микроскопа. Сначала они попросили экспертов идентифицировать на 1200 изображениях дифференцированные клетки при помощи точного метода с использованием флуоресцентного репортера.

Нейросеть обучили на 750 изображениях, еще 150 были использованы для валидации и 250 — для тестов. После проверки всех предсказаний оказалось, что люди определяли дифференцированные клетки с точностью около 67 процентов, в то время как нейросеть имела точность 84 процента.

«Наши результаты показывают, что критерии отбора тканей сетчатки на ранней стадии субъективны и зависят от эксперта, который принимает решение. При этом морфология (то есть структура) самой ткани даже на очень ранней стадии позволяет прогнозировать дифференцировку сетчатки. И программа, в отличие от человека, может извлечь эту информацию.

С учетом того, что этот подход не требует сложных изображений, флуоресцентных репортеров или красителей для анализа, его легко внедрить. Это позволяет сделать еще один шаг в сторону создания клеточных терапий для таких заболеваний сетчатки, как глаукома и макулярная дистрофия, которые сейчас практически неминуемо приводят к слепоте. Кроме того, этот подход может быть перенесен не только на другие клеточные линии, но и на человеческие искусственные органы», — дополняет Евгений Кегелес, сотрудник лаборатории терапии орфанных заболеваний МФТИ.

Московский физико-технический институт — ведущий технический вуз страны, который входит в престижные рейтинги лучших университетов мира. Здесь обучают фундаментальной и прикладной физике, математике, информатике, химии, биологии, компьютерным технологиям и другим естественным и точным наукам.

Сегодня Физтех – это передовой научный центр. В МФТИ организована научная деятельность, посвященная в том числе проблемам старения и возрастных заболеваний, прикладной и фундаментальной физике, двумерным материалам, квантовым технологиям, искусственному интеллекту, геномной инженерии, арктическим и космическим исследованиям. 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Вчера, 12:51
Алиса Гаджиева

Ученые обнаружили, что древняя медная промышленность Израильского царства была организована так, что в итоге в ее центре не осталось ни растений, ни самой промышленности.

Вчера, 11:37
Александр Березин

В инфопространство «утекло» нечто очень похожее на документ стратегического исследовательского центра RAND, адресованный в том числе ЦРУ. Автор этого документа утверждает, что конфликт на Украине полезен для Штатов, поскольку позволяет им «раздеть» своих экономических конкурентов — Германию и Францию, — попутно перекачав капитал из еврозоны в США. Действительно ли Вашингтону выгодны крупные финансово-экономические потери еврозоны, связанные с российско-украинским конфликтом? И если это так, то что это значит для России?

Сегодня, 11:19
Сергей Васильев

Данные о пролете метеора, взорвавшегося над Тихим океаном в 2017 году, указали на его внесолнечную природу. Возможно, это был фрагмент, оставшийся от взрыва далекой сверхновой: богатый тяжелыми элементами и сверхтвердый «межзвездный снаряд».

20 сентября
Сергей Васильев

Ученые впервые дали строго обоснованную оценку числа и массы муравьев, живущих на нашей планете. Цифры получились астрономические: десятки триллионов насекомых и десятки миллионов тонн.

19 сентября
Ольга Иванова

Исследование китайских ученых, проведенное на выборке с участием более чем миллиона человек, показало, что употребление черного и зеленого чая, а также улуна значительно снижает риск развития диабета второго типа.

18 сентября
Сергей Васильев

В далеком прошлом на соседней планете постоянно возникали и исчезали небольшие озера. Сегодня именно в их осадочных породах мы можем найти следы возможной марсианской жизни.

16 сентября
Алиса Гаджиева

Геродот в своей «Истории» утверждал, что блоки для пирамиды Хеопса и соседних пирамид доставляли по воде. Но сегодня от Нила до пирамид слишком далеко. Исследование кернов, взятых в пойме реки, позволило понять, как именно решался сложнейший вопрос транспортировки такого строительного материала.

15 сентября
Никита Логинов

Светодиоды потребляют намного меньше энергии, чем традиционные газоразрядные лампы, что должно сократить парниковые выбросы. Но при этом светодиодное освещение угрожает здоровью жителей и разрушает местные экосистемы в городах и селах.

26 августа
Алиса Гаджиева

Ученые предложили объяснение давней загадке: почему у жителей Азии неандертальских генов больше, чем у европейцев.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: