Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
#кристаллическая решетка
Коллектив ученых из МФТИ и исследовательского института Женгжоу (Харбинский политехнический университет, Китай) построил новый «мост» между теорией и практикой для квантовых технологий на основе алмаза. Их работа показала возможности «деформационной инженерии» для стабилизации цветных центров алмазов. Результаты этого исследования открывают перспективы для разработок квантовых устройств.
Коллектив российских ученых из МИРЭА — Российского технологического университета, Центра фотоники двумерных материалов МФТИ, Института металлургии и материаловедения им. А. А. Байкова РАН и ряда других ведущих научных центров провел глубокое исследование кристаллической структуры широко используемых пьезоэлектрических материалов на основе цирконата-титаната свинца. Используя метод рентгеноструктурного анализа, исследователи впервые смогли в деталях установить, как небольшие химические добавки кардинально меняют фазовый состав керамики и напрямую определяют ее электрофизические характеристики. Это открывает путь к целенаправленному дизайну «умных» материалов с заранее заданными свойствами для передовой электроники и сенсорики.
Алмаз, как самый твердый из известных природных минералов, ценится не только в ювелирной индустрии, но и — за счет исключительной теплопроводности и оптических свойств — в промышленности. Однако искусственно выращенные из графита алмазы превосходят натуральные по твердости, хотя синтезировать их очень сложно. Ученые из Китая смогли получить такой образец с гексагональной кристаллической решеткой без примесей.
Ученый выяснил, что двумерные материалы на основе цинка, ванадия и азота при контакте с кислородом восстанавливают свою структуру после образования дефектов. Так, согласно моделированию, поврежденные участки материала — места отсутствующих атомов азота или цинка — быстро «залечиваются» благодаря тому, что молекулы кислорода расщепляются, а их атомы заполняют пустоты, воссоздавая правильную кристаллическую решетку. Эта особенность делает материалы удобными для использования в солнечной энергетике и экологически чистом водородном катализе, где долговечность и стабильность структуры критически важны.
Исследователи из Сколтеха, Института кристаллографии имени А. В. Шубникова РАН и научных центров Китая, Японии и Италии нашли материал, способный вбирать и удерживать в своем объеме в четыре раза больше водорода, чем другие известные вещества для «химического хранения» этого экологичного топлива. В будущем на водороде могли бы работать промышленное производство и транспорт, а водородные накопители уже внедряются для балансирования нагрузки на электросеть. Сложность в том, что водород плохо поддается хранению — в решение этой проблемы и внесли вклад авторы нового исследования.
Ученые ИФХЭ РАН синтезировали восемь новых гексагалотехнетатов (для галогенов фтора, хлора и брома) с различными органическими катионами, определили их кристаллическую структуру и провели термолиз новых соединений. Для синтезированных молекул и для аналогичных соединений технеция и рения, описанных в научной литературе, был проведен сравнительный анализ нековалентных взаимодействий в катионах и анионах в зависимости от органического катиона и атома галогена.
Титан и титановые сплавы — важнейший компонент для многих сфер промышленности. Из них изготавливают сотни различных вещей: от протезов и зубных имплантатов до солнечных батарей и радиоантенн. Титан считается одним из самых прочных металлов в мире, однако даже он подвержен процессам разрушения. Прогнозируя возникновение микроповреждений в титановой детали, обычно используют «классические» критерии разрушения – максимальные значения напряжений, энергии или деформаций, которые деталь может выдержать. Однако этот метод не учитывает внутреннюю структуру материала, например, особенности и дефекты его кристаллической атомной решетки. Ученые ПНИПУ создали математическую модель разрушения титанового сплава, учитывающую его внутреннее строение, и выяснили, при каких условиях в нем возникают повреждения.
Исследователи из Лаборатории гибридной фотоники Сколтеха и Саутгемптонского, а также Ланкастерского университетов продемонстрировали новый оптический метод, позволяющий синтезировать искусственные твердотельные кристаллические структуры для экситон-поляритонов в микрорезонаторе, используя лишь лазерное излучение. Полученные результаты могут стать основой для реализации программируемых схем на базе поляритонов, разработки новых стратегий создания управляемого оптического излучения, а также методов создания надежных пространственно-локализованных когерентных источников света.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии