Физики увидели наноантенны в новом свете, что может помочь развитию цифровых технологий — Naked Science
11 минут
ФизТех

Физики увидели наноантенны в новом свете, что может помочь развитию цифровых технологий

4.5

Ученые из МФТИ и Физического института имени П. Н. Лебедева РАН предложили новую конструкцию оптических антенн для нанофотонных устройств, на основе серебряных наночастиц и кадмиевых квантовых точек, которые испускают более яркое люминесцентное излучение и при этом обладают меньшим временем реакции. Кроме того, исследователи предложили новый способ получения микроизображений антенн, позволяющий обойтись без использования метода «темного поля». Наноантенны, в свою очередь, - это один из элементов, необходимый для создания квантовых компьютеров. Кроме того, они могут быть использованы в органических светодиодах, из которых можно собрать световую поверхность или экран.

Физики увидели наноантенны в новом свете, что может помочь развитию цифровых технологий / ©Getty images

Работа опубликована в журнале Nanotechnology. Современная электроника основана на использовании электронов в качестве носителей информации, однако классические медные провода и дорожки на чипах уже не могут передавать информацию с достаточной для современных процессоров скоростью. Переход от электронов к фотонам может решить эту проблему.

Нанофотонные устройства представляют интерес для применения в области цифровых технологий — в крупных дата-центрах, для мобильных сенсорных устройств, а также для аналоговых оптических сопроцессоров. Ключевой компонент таких устройств — наноантенна, способная принимать излучение определенной длины волны и преобразовывать его — менять частоту, амплитуду или направление.

В 1985 году Джон Вессель показал, что в качестве наноантенны можно использовать металлическую наночастицу. Дальнейшее развитие технологии привело к созданию нанопатч-антенн. Название «патч» происходит от английского «заплатка» — металлические наночастицы располагаются на металле, покрытом слоем диэлектрика, как заплатки на ткани (рисунок 1).

Рисунок 1. (а, с) Схематическое устройство нанопатч-антенны. На стекло нанесен слой металла – алюминия, который, окисляясь, покрывается пленкой Al2O3, являющегося диэлектриком. Далее нанесен слой квантовых точек – небольших кристаллов сульфида или селенида кадмия, способных под воздействием электромагнитного излучения испускать свет определенной длины волны. Выше расположены кубические наночастицы серебра размером 80 нм / ©Nanotechnology

Под действием внешнего электромагнитного поля электроны в наночастице смещаются, образуя на краю частицы отрицательный заряд, противоположный край при этом приобретает положительный заряд, частица поляризуется.

Рисунок 2. Возбуждение локального поверхностного плазмонного резонанса электрическим полем (А) и распределение интенсивности поля вокруг наночастицы с возбужденным плазмоном (Б) / ©«Успехи биологической химии», т. 55, 2015, с. 391–420, «Детекция межмолекулярных взаимодействий, основанная на регистрации поверхностного плазмонного резонанса», Д. В. Сотников, А. В. Жердев, Б. Б. Дзантиев

При этом возникает электромагнитное поле, направленное противоположно внешнему, которое колеблется в такт с падающей на частицу электромагнитной волной. Эти колебания физики описывают с помощью специальной квазичастицы — плазмона. Если частота волны не превышает определенного значения, внутреннее поле «экранирует» наночастицу от внешнего, падающая волна отражается – отсюда и характерный блеск, которым обладают металлы. Если же частота выше, электроны «не успеют» среагировать — волна поглотится или рассеется. Как и в любых колебаниях, у нас есть частота вынуждающего излучения, при которой амплитуда максимальна — частота плазмонного резонанса.

«В результате колеблющиеся электроны в зазоре между металлической наночастицей и слоем металла создают мощное электрическое поле, намного превосходящее внешнее. Находящиеся в этом поле квантовые точки, более эффективно поглощают внешнее излучение, и, следовательно более эффективно излучают.

Уменьшение времени, за которое происходит излучение квантовой точки происходит за счет открытого в 1964 году эффекта Парсела: поместив квантовую точку в резонатор из металлического слоя и наночастицы, мы можем заставить ее излучать быстрее», — поясняет Алексей Витухновский, профессор, заведующий лабораторией технологий 3D-печати функциональных микроструктур МФТИ.

Физики из лаборатории технологий 3D-печати функциональных микроструктур МФТИ с коллегами разработали конструкцию нанопатч-антенны, которая позволила сократить паузу между облучением и люминесцентным ответом в 60 раз (с 12 наносекунд до 0,2) и увеличить интенсивность излучения в 330 раз. Кроме того, ученые предложили новый способ оптического исследования структуры нанопатч-антенн, основанный на перестройке длины волны лазерного излучения.

Традиционный подход подразумевает использование метода «темного поля», когда образец подсвечивается «сбоку», и изображение формируется рассеянным на нем светом. Основные минусы темнопольной микроскопии — подсветка в широком спектральном диапазоне, при этом фокусное расстояние для разных длин волн будет разным, изображение будет получаться размытым. Кроме того, если в основном наблюдение объекта ведется в светлом поле, перестраиваться в темное поле долго и неудобно.

Рисунок 3. Предложенная учеными схема микроскопии в свете слегка рассеянного лазерного излучения / ©Nanotechnology

Предложенный авторами метод лишен этих недостатков — он основан на том, что наночастица на металле поглощает падающее излучение с частотой, близкой к частоте плазмонного резонанса, поэтому на изображении частица будет выглядеть темным пятном. Длина волны, при которой происходит плазмонный резонанс в серебряной наночастице на алюминии около 700 нм, поэтому при длине волны лазера в 650 нм картинка получается более четкой.

Рисунок 4. а) изображение серебряных наночастиц на стекле, полученное методом темного поля, b) и при помощи предложенного метода, c) изображение серебряных наночастиц на металле, полученное при освещении образца лазерным излучением с длиной волны 530 нм, d) – и 650 нм / ©Nanotechnology

«Наноантенны — один из элементов, необходимый для создания квантовых компьютеров. Квантовые компьютеры используют источники одиночных фотонов, работающие на больших скоростях — и нанопатч-антенны могут выступать в роли такого источника. Кроме того, они могут быть использованы в органических светодиодах, из которых, в свою очередь, можно собрать световую поверхность или экран», — комментирует Станислав Елисеев, старший научный сотрудник лаборатории технологий 3D-печати функциональных микроструктур МФТИ. Исследование поддержано Российским фондом фундаментальных исследований.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Вчера, 21:55
7 минут
Мария Азарова

Исследователи впервые показали присутствие коронавируса в ткани полового члена спустя как минимум полгода с момента заражения. Судя по всему, распространенная у пациентов с Covid-19 дисфункция эндотелиальных клеток может приводить и к развитию импотенции.

6 часов назад
4 минуты
Сергей Васильев

Очередной интерфейс мозг — компьютер от консорциума BrainGate регистрирует сигналы моторной коры, превращая их в буквы на скорости 16 слов в минуту.

Позавчера, 21:42
8 минут
Мария Азарова

Блокирование рецептора, который помогает сохранять энергию в условиях голода, назвали ключом к более безопасным профилактике и лечению ожирения, вызванного неправильным образом жизни.

Позавчера, 08:45
11 минут
Мария Азарова

Американские ученые показали, что РНК коронавируса SARS-CoV-2 проходит через обратную транскрипцию, встраивается в геном инфицированной клетки и экспрессируется в виде «химерных» транскриптов, сливающихся с вирусными с клеточными последовательностями.

8 мая
37 минут
Александр Березин

Филипп Мандей основал целое направление исследований: он первым установил, что закисление океанов — последствие глобального потепления — угрожает обонянию и умению ориентироваться у морских рыб. Само собой, это создает угрозу их вымирания. Долго оставалось загадкой только одно: как существующие виды рыб перенесли серьезное закисление океана при прошлых изменениях климата. Теперь все проясняется: похоже, Мандей обнаружил эффект, которого никогда не было. Интересно, что вместе с ним его наблюдали еще 179 ученых — и теперь все они оказались в центре чудовищного скандала. Попробуем разобраться в деталях.

Вчера, 21:55
7 минут
Мария Азарова

Исследователи впервые показали присутствие коронавируса в ткани полового члена спустя как минимум полгода с момента заражения. Судя по всему, распространенная у пациентов с Covid-19 дисфункция эндотелиальных клеток может приводить и к развитию импотенции.

16 апреля
4 минуты
Илья Ведмеденко

Исследователи установили, что обнаруженный в Баренцевом море объект — погибшая советская субмарина типа «Крейсерская». Это одна из самых больших подлодок СССР периода Второй мировой.

23 апреля
11 минут
Василий Парфенов

Действующий глава NASA в рамках общения с прессой ответил на ряд вопросов, касающихся недавних заявлений российских политиков и главы «Роскосмоса» о скором отказе от собственного сегмента МКС. Администратор заверил всех, что агентство находится в хороших отношениях с Россией, а также поделился информацией о согласовании обмена местами для астронавтов и космонавтов в пилотируемых миссиях двух стран.

25 апреля
17 минут
Александр Березин

На этой неделе СМИ выдали новость, от которой можно впасть в шок: «Ранее из России уезжало около 14 тысяч исследователей [в год], теперь — 70 тысяч». Мы внимательно разобрались в ситуации и вынуждены отметить, что ничего подобного не было и нет. В реальности речь вовсе не об ученых и даже не о высококвалифицированных специалистах. Проблемы с учеными в России есть. Но в этом случае речь идет не о них, а о том, что отдельные бывшие комсомольские вожаки, удачно устроившиеся в РАН, перепутали утечку мозгов из России с отъездом из нее гастарбайтеров. Разбираемся, как это у них получилось.

[miniorange_social_login]

Комментарии

Написать комментарий

Подтвердить?
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: