Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Пермские ученые «раскроили» промышленные детали с помощью нейросетей
Сокращение отходов производства приводит к снижению себестоимости конечного продукта, а, значит, к увеличению прибыли. Для изготовления деталей из сырья часто требуется раскрой из металлического листового материала на заготовки произвольной формы, например, в машиностроении, автомобильной промышленности, на металлообрабатывающих заводах и других производствах. Для экономии необходимо рационально разместить детали на полотне. Такой процесс известен как создание карты раскроя материала. Использование дорогостоящего сырья предъявляет еще более жесткие требования к качеству и методам решения проблемы. Ученые ПНИПУ разработали комбинированный алгоритм для оптимального расположения фигур на листе на основе технологии искусственных нейросетей.
Такой способ минимизирует отходы производства при вырезании деталей, что позволит экономить сырье и повышать эффективность производства.
Существует два вида фигурного раскроя: регулярный и нерегулярный. В первом – у всех геометрических объектов одинаковая форма и ориентация. Решение задачи второго типа практически невозможно точными методами из-за произвольности форм и, следовательно, большого объема входных данных.
Основная проблема заключается в том, что одни способы приводят к нецелесообразным временным затратам в связи с перебором объектов, другие ограничиваются лишь одним из оптимальных вариантов, а не самым лучшим (локальные результаты, которые не соответствуют глобальному).
Ученые Пермского Политеха разработали новый уникальный алгоритм решения задачи двумерного (плоского) нерегулярного раскроя материала с использованием технологии нейронных сетей.
На первом этапе оператор задает размеры и форму листа. Далее производит выбор из стандартных фигур, таких как круг, квадрат, треугольник и указывает их размеры. Если необходимо разложить детали нестандартной формы, то их можно задать посредством координат или выгрузкой из базы данных. После чего запускается обучение, и затем программа выполняет сам раскрой.
Для повышения эффективности алгоритм дополнен гравитационным уплотнением карты раскроя – на фигуры действуют случайные силы внутри физически смоделированной среды. При таком воздействии на объекты они располагаются более плотно: по аналогии с реальным миром, если трясти закрытую коробку с различными предметами, то они расположатся наиболее оптимальным для себя образом. В случае его использования результат заполнения улучшается до 22 процентов.
«В основу алгоритма легла идея моделирования процесса обучения, по аналогии с реальным миром, когда человек с нуля обучается какому-либо навыку. Перед нейронной сетью стоит цель научится находить приемлемое решение задачи раскроя-упаковки. Для того, чтобы снизить нагрузку и уменьшить время сходимости, проектируется среда по реальным физическим законам. Она полностью исключает случаи взаимного пересечения фигур и выход их за границы области раскроя», – поделился старший преподаватель кафедры «Технических дисциплин» Лысьвеньского филиала ПНИПУ Сергей Зыкин.
Работа нейронной сети проходит по эпизодам. Эпизод – это одна попытка получить решение задачи. Нейросеть обучалась на 30000 таких эпизодов, при этом их количество может увеличиваться в зависимости от числа фигур в раскрое.
Разработка политехников реализована в виде программы. С ее помощью на производстве можно автоматически составлять эскизы заготовки с контурами вырезаемых деталей и получать рекомендации рационального размещения геометрических объектов сложной формы на листе. Сейчас программа проходит испытания как на градообразующем, так и на малых предприятиях, которые используют в своем производстве раскрой материала.
На разработку выдано соответствующее свидетельство. Статья опубликована в «Вестнике ВГУ. Системный анализ и информационные технологии». Исследование выполнено при финансовой поддержке Российского научного фонда.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
Вокруг звезды HD 131488, расположенной в созвездии Центавра (Centaurus) на расстоянии около 152 световых лет от Земли, впервые зафиксировали следы монооксида углерода (CO), который образуется при столкновениях и испарении комет. Находка открывает новую страницу в изучении формирования планетных систем.
Палеонтологи описали крупнейшее в мире скопление следов динозавров: более 16 000 вмятин на площади 7500 квадратных метров. Ученые считают, что эта территория была не просто местом случайных прогулок, а оживленной трассой, где динозавры организованно мигрировали вдоль берега древнего озера.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно