Хотите получать важные новости науки?
Подписаться
  • Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
16.07.2024
ПНИПУ
286

Пермские ученые «раскроили» промышленные детали с помощью нейросетей

4.3

Сокращение отходов производства приводит к снижению себестоимости конечного продукта, а, значит, к увеличению прибыли. Для изготовления деталей из сырья часто требуется раскрой из металлического листового материала на заготовки произвольной формы, например, в машиностроении, автомобильной промышленности, на металлообрабатывающих заводах и других производствах. Для экономии необходимо рационально разместить детали на полотне. Такой процесс известен как создание карты раскроя материала. Использование дорогостоящего сырья предъявляет еще более жесткие требования к качеству и методам решения проблемы. Ученые ПНИПУ разработали комбинированный алгоритм для оптимального расположения фигур на листе на основе технологии искусственных нейросетей.

Пример отработки алгоритма / © Сергей Зыкин, ПНИПУ

Такой способ минимизирует отходы производства при вырезании деталей, что позволит экономить сырье и повышать эффективность производства.

Существует два вида фигурного раскроя: регулярный и нерегулярный. В первом – у всех геометрических объектов одинаковая форма и ориентация. Решение задачи второго типа практически невозможно точными методами из-за произвольности форм и, следовательно, большого объема входных данных.

Основная проблема заключается в том, что одни способы приводят к нецелесообразным временным затратам в связи с перебором объектов, другие ограничиваются лишь одним из оптимальных вариантов, а не самым лучшим (локальные результаты, которые не соответствуют глобальному).

Ученые Пермского Политеха разработали новый уникальный алгоритм решения задачи двумерного (плоского) нерегулярного раскроя материала с использованием технологии нейронных сетей.

На первом этапе оператор задает размеры и форму листа. Далее производит выбор из стандартных фигур, таких как круг, квадрат, треугольник и указывает их размеры. Если необходимо разложить детали нестандартной формы, то их можно задать посредством координат или выгрузкой из базы данных. После чего запускается обучение, и затем программа выполняет сам раскрой.

Для повышения эффективности алгоритм дополнен гравитационным уплотнением карты раскроя – на фигуры действуют случайные силы внутри физически смоделированной среды. При таком воздействии на объекты они располагаются более плотно: по аналогии с реальным миром, если трясти закрытую коробку с различными предметами, то они расположатся наиболее оптимальным для себя образом. В случае его использования результат заполнения улучшается до 22 процентов.

«В основу алгоритма легла идея моделирования процесса обучения, по аналогии с реальным миром, когда человек с нуля обучается какому-либо навыку. Перед нейронной сетью стоит цель научится находить приемлемое решение задачи раскроя-упаковки. Для того, чтобы снизить нагрузку и уменьшить время сходимости, проектируется среда по реальным физическим законам. Она полностью исключает случаи взаимного пересечения фигур и выход их за границы области раскроя», – поделился старший преподаватель кафедры «Технических дисциплин» Лысьвеньского филиала ПНИПУ Сергей Зыкин.

Работа нейронной сети проходит по эпизодам. Эпизод – это одна попытка получить решение задачи. Нейросеть обучалась на 30000 таких эпизодов, при этом их количество может увеличиваться в зависимости от числа фигур в раскрое.

Разработка политехников реализована в виде программы. С ее помощью на производстве можно автоматически составлять эскизы заготовки с контурами вырезаемых деталей и получать рекомендации рационального размещения геометрических объектов сложной формы на листе. Сейчас программа проходит испытания как на градообразующем, так и на малых предприятиях, которые используют в своем производстве раскрой материала.

На разработку выдано соответствующее свидетельство. Статья опубликована в «Вестнике ВГУ. Системный анализ и информационные технологии». Исследование выполнено при финансовой поддержке Российского научного фонда.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Пермский национальный исследовательский политехнический университет (национальный исследовательский, прошлые названия: Пермский политехнический институт, Пермский государственный технический университет) — технический ВУЗ Российской Федерации. Основан в 1960 году как Пермский политехнический институт (ППИ), в результате объединения Пермского горного института (организованного в 1953 году) с Вечерним машиностроительным институтом. В 1992 году ППИ в числе первых политехнических вузов России получил статус технического университета.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Вчера, 10:24
Любовь Соковикова

Изучив распределение древних и плотных звездных систем в скоплении Персея, ученые наткнулись на уникальную галактику, которая практически полностью состоит из темной материи.

Вчера, 10:57
Александр Березин

Выбросы углекислого газа, которые возникнут при сжигании доказанных запасов ископаемого топлива всего 200 компаний, будут настолько велики, что для их компенсации нужны новые леса в десятки миллионов квадратных километров. По крайней мере, так считают авторы новой научной работы. Однако исследование их предшественников ставит эти выводы под серьезное сомнение.

Вчера, 07:43
Андрей Папиш

Богомолы единственные среди насекомых обладают стереоскопическим зрением, как у человека. Британские биологи провели эксперимент над богомолами, надев на них 3D-очки и подвесив вниз головой. Специалисты проверяли, как охотники отреагируют на стимулы с разной и одинаковой контрастностью. В итоге опыт стал иллюстрацией парадокса буриданова осла.

17 июня
Адель Романенкова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

Позавчера, 13:42
ЮФУ

В ЮФУ придумали новый остроумный способ тестировать ИИ на способность работать в реальных ситуациях использования русского языка. Исследователи искусственного интеллекта из МИИ ИМ ЮФУ предлагают использовать интеллектуальные языковые игры, как пример — заставлять ИИ отвечать на вопросы из архива телевикторины «Что? Где? Когда?» и «Своей игры». Инициативу прокомментировал опытный игрок.

18 июня
Александр Березин

Ученые проанализировали сохранившиеся следы языка гуннов и пришли к неожиданному выводу: он принадлежал к енисейской семье языков. По их мнению, потомками гуннов были аринцы, до XVIII века проживавшие в районе Красноярска и совершавшие набеги на русские опорные пункты.

17 июня
Адель Романенкова

Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.

5 июня
Александр Березин

Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.

22 мая
ПНИПУ

Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно