• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
16 июля
ПНИПУ
262

Пермские ученые «раскроили» промышленные детали с помощью нейросетей

4.3

Сокращение отходов производства приводит к снижению себестоимости конечного продукта, а, значит, к увеличению прибыли. Для изготовления деталей из сырья часто требуется раскрой из металлического листового материала на заготовки произвольной формы, например, в машиностроении, автомобильной промышленности, на металлообрабатывающих заводах и других производствах. Для экономии необходимо рационально разместить детали на полотне. Такой процесс известен как создание карты раскроя материала. Использование дорогостоящего сырья предъявляет еще более жесткие требования к качеству и методам решения проблемы. Ученые ПНИПУ разработали комбинированный алгоритм для оптимального расположения фигур на листе на основе технологии искусственных нейросетей.

Пример отработки алгоритма / © Сергей Зыкин, ПНИПУ

Такой способ минимизирует отходы производства при вырезании деталей, что позволит экономить сырье и повышать эффективность производства.

Существует два вида фигурного раскроя: регулярный и нерегулярный. В первом – у всех геометрических объектов одинаковая форма и ориентация. Решение задачи второго типа практически невозможно точными методами из-за произвольности форм и, следовательно, большого объема входных данных.

Основная проблема заключается в том, что одни способы приводят к нецелесообразным временным затратам в связи с перебором объектов, другие ограничиваются лишь одним из оптимальных вариантов, а не самым лучшим (локальные результаты, которые не соответствуют глобальному).

Ученые Пермского Политеха разработали новый уникальный алгоритм решения задачи двумерного (плоского) нерегулярного раскроя материала с использованием технологии нейронных сетей.

На первом этапе оператор задает размеры и форму листа. Далее производит выбор из стандартных фигур, таких как круг, квадрат, треугольник и указывает их размеры. Если необходимо разложить детали нестандартной формы, то их можно задать посредством координат или выгрузкой из базы данных. После чего запускается обучение, и затем программа выполняет сам раскрой.

Для повышения эффективности алгоритм дополнен гравитационным уплотнением карты раскроя – на фигуры действуют случайные силы внутри физически смоделированной среды. При таком воздействии на объекты они располагаются более плотно: по аналогии с реальным миром, если трясти закрытую коробку с различными предметами, то они расположатся наиболее оптимальным для себя образом. В случае его использования результат заполнения улучшается до 22 процентов.

«В основу алгоритма легла идея моделирования процесса обучения, по аналогии с реальным миром, когда человек с нуля обучается какому-либо навыку. Перед нейронной сетью стоит цель научится находить приемлемое решение задачи раскроя-упаковки. Для того, чтобы снизить нагрузку и уменьшить время сходимости, проектируется среда по реальным физическим законам. Она полностью исключает случаи взаимного пересечения фигур и выход их за границы области раскроя», – поделился старший преподаватель кафедры «Технических дисциплин» Лысьвеньского филиала ПНИПУ Сергей Зыкин.

Работа нейронной сети проходит по эпизодам. Эпизод – это одна попытка получить решение задачи. Нейросеть обучалась на 30000 таких эпизодов, при этом их количество может увеличиваться в зависимости от числа фигур в раскрое.

Разработка политехников реализована в виде программы. С ее помощью на производстве можно автоматически составлять эскизы заготовки с контурами вырезаемых деталей и получать рекомендации рационального размещения геометрических объектов сложной формы на листе. Сейчас программа проходит испытания как на градообразующем, так и на малых предприятиях, которые используют в своем производстве раскрой материала.

На разработку выдано соответствующее свидетельство. Статья опубликована в «Вестнике ВГУ. Системный анализ и информационные технологии». Исследование выполнено при финансовой поддержке Российского научного фонда.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Пермский национальный исследовательский политехнический университет (национальный исследовательский, прошлые названия: Пермский политехнический институт, Пермский государственный технический университет) — технический ВУЗ Российской Федерации. Основан в 1960 году как Пермский политехнический институт (ППИ), в результате объединения Пермского горного института (организованного в 1953 году) с Вечерним машиностроительным институтом. В 1992 году ППИ в числе первых политехнических вузов России получил статус технического университета.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Позавчера, 20:37
Андрей

Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.

Вчера, 11:31
Березин Александр

Несмотря на отмену попытки «экономичной» ловли первой ступени, шестой испытательный полет Starship был успешным. Корабль — вторая ступень системы впервые продемонстрировала возможность маневра на орбите. Первая ступень после приводнения неожиданно для всех смогла пережить два взрыва, не утратив плавучесть. Среди наблюдавших за испытанием был Дональд Трамп.

Вчера, 11:45
Сеченовский Университет

Международная команда специалистов во главе с сотрудниками Центра математического моделирования в разработке лекарств Первого МГМУ имени И. М. Сеченова выявила наиболее перспективные направления для исследований в области лечения аутоиммунных заболеваний. Команда первой провела систематический обзор для поиска всех опубликованных в научных работах математических моделей аутоиммунных патологий и выявила недостаток моделей, которые могут значительно ускорить разработку новых лекарств.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

15 ноября
Елизавета Александрова

Принято считать, что естественный спутник Земли возник в результате ее столкновения с другой планетой, но к этой версии есть вопросы. Теперь ученые предложили рассмотреть сценарий возможного захвата Луны притяжением Земли из пролетавшей мимо двойной системы.

Позавчера, 14:21
Юлия Трепалина

Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.

30 октября
Елизавета Александрова

Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.

16 ноября
Evgenia

Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.

31 октября
Татьяна

Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно