Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Ученые Сколтеха научились прогнозировать засухи на год вперед
Исследователи из Сколтеха совместно с коллегами из Сбера предложили модели глубокого обучения для прогнозирования засух по климатическим данным. Долгосрочные прогнозы такого рода нужны сельскохозяйственным предприятиям для планирования своей деятельности, а страховщикам и банкам — для оценки соответствующих рисков и уточнения кредитных рейтингов корпоративных заемщиков.
Исследование опубликовано в престижном научном журнале первого квартиля Environmental Modelling & Software; препринт доступен в онлайн-библиотеке arXiv. Чтобы планировать сельскохозяйственную деятельность, оценивать и страховать риски, связанные с возможностью наступления засухи, нужны точные и долгосрочные прогнозы. Проблема качественного предсказания засухи до сих пор не решена из-за стохастической природы (велика роль случайности) самого этого явления и сложности используемых данных.
Исследователи из Сколтеха и Сбера предложили комплексный нейросетевой подход для средне- и долгосрочного прогнозирования засух: на период от нескольких месяцев до года. Решение основано на использовании пространственно-временных нейронных сетей и доступных ежемесячных климатических данных и объединяет современные нейросетевые подходы с классическими методами.
Модели протестировали на данных по пяти регионам, расположенным на разных континентах и в разных климатических зонах, — это Польша, штат Миссури в США, бразильский штат Гояс, индийский штат Мадхья-Прадеш и северная часть Казахстана (смотрите карту).
«В ходе исследования было установлено, что для среднесрочного прогнозирования наилучшие результаты показала наша модификация модели EarthFormer на основе трансформера, а для долгосрочного прогнозирования — модификация модели ConvLSTM, — объясняет научный руководитель исследования, старший преподаватель Сколтеха и заведующий Лабораторией прикладных исследований «Сколтех-Сбербанк» (LARSS) в Центре прикладного ИИ Алексей Зайцев. — Наша модель показывает высокое качество для разных климатических зон. За счет использования надежных методов ИИ ее качество останется высоким следующие 10 лет».
Первый автор работы, старший инженер-исследователь Центра прикладного ИИ Сколтеха Александр Марусов, отметил: «Прогноз засухи имеет первостепенное значение для многих регионов нашей страны. В том числе и для моего родного края — Астраханской области. Однако моделирование этого природного явления достаточно сложно ввиду необходимости учета различных факторов, в том числе и глобального потепления. Наши модели позволяют строить качественные прогнозы засухи на год вперед».
Результаты исследования также будут применяться крупнейшим российским банком в системе управления рисками. Соавтор статьи Назар Сотириади, управляющий директор Департамента интегрированного риск-менеджмента Сбера, отметил: «В России климатические риски не так заметны, как в странах с более высокой плотностью инфраструктуры, однако они уже существенно влияют на экономику.
Засухи создают риски для сельского хозяйства, объектов энергетики и населения. Мы используем результаты совместных исследований с коллегами из Сколтеха для повышения точности наших оценок в страховании и кредитовании. В ближайшие годы управление этими рисками может иметь более существенное влияние на бизнес, чем мы предполагали 3–5 лет назад. В таких задачах без модельных оценок не обойтись». Освещенное в пресс-релизе исследование поддержано Аналитическим центром при Правительстве России.
Множество ученых по всему миру объединились, чтобы составить и опубликовать всеобъемлющую дорожную карту разработки межатомных потенциалов машинного обучения в области материаловедения и инженерии. Они подробно описали, как машинное обучение должно привести к революции в нашем понимании в проектировании и открытии новых материалов, позволяя проводить компьютерное моделирование атомов.
Специалисты Института истории материальной культуры РАН ведут работы по созданию единого цифрового архива Старой Ладоги — древнейшего городского поселения на Северо-Западе России. В базу войдут оцифрованные материалы более чем за 100 лет археологических исследований: от рукописных отчетов экспедиций XX века до современных 3D-моделей раскопов.
Ученые СПбГУ предложили инновационный подход к синтезу виниловых соединений, значительно снизив количество отходов и риски, связанные с использованием ацетилена. Новый метод позволяет эффективно получать ценные химические соединения с минимальным воздействием на окружающую среду.
Ученые из Сколтеха исследовали разнообразие молекул, которые могут образовываться из атомов кислорода и углерода. Помимо широко известных углекислого и угарного газов, моделирование обнаружило две сотни экзотических, но относительно стабильных соединений этих двух элементов, многие из которых не были описаны ранее. Этот класс веществ представляет интерес для исследований космоса, аккумуляторных технологий, биохимии и — неожиданным образом — для разработки промышленной взрывчатки и ракетного топлива. Как оказалось, некоторые из открытых веществ при распаде будут высвобождать более 75 процентов взрывной энергии тротила.
Два ключевых события сыграли решающую роль в формировании генетического профиля современных европейских народов. Первое связано с приходом ранних фермеров из Анатолии примерно восемь тысяч лет назад, второе — масштабная миграция на запад носителей ямной степной культуры, начавшаяся пять тысяч лет назад. Однако ученые видят множество отличий от общей картины в разных регионах. В новой работе они проанализировали ДНК древних жителей самого северо-запада Европы и обнаружили более тесную связь с охотниками-собирателями, чем где бы то ни было.
В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии