• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
05.01.2021, 08:05
Василий Парфенов
9
7,1 тыс

Искусственный интеллект научился определять свойства любых молекул, решая уравнение Шредингера

❋ 8.0

Прорывной алгоритм может в разумные сроки и не привлекая суперкомпьютеры решать уравнение Шредингера для произвольных молекул. Это позволяет без трудоемких и затратных натурных экспериментов с большой вероятностью определять основные свойства вещества.

Искусственный интеллект научился определять свойства любых молекул решая уравнение Шредингера
Пример определения свойств молекулы циклобутадиена разными методами. PauliNet сравнивается с двумя вариантами связанных кластеров (MR-CC и CCSD), а также с экспериментальными данными / ©Hermann, J., Schätzle, Z. & Noé, F. Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12, 891–897 (2020). https://doi.org/10.1038/s41557-020-0544-y / Автор: Наталья Федосеева

Разработку представили немецкие ученые из Свободного университета Берлина (Freie Universität Berlin). Особенности разработки и обучения глубинной нейронной сети PauliNet они описали в статье, которая была опубликована в рецензируемом журнале Nature Chemistry. Поскольку материал доступен только по подписке, его основные тезисы также можно изучить в препринте, размещенном на портале arXiv годом ранее. С тех пор научная работа была существенно дополнена, в том числе практическими результатами, но общее представление о технологии дает и предварительная публикация.

Алгоритм PauliNet получил свое название в честь принципа Паули — одного из фундаментальных правил квантовой механики. Согласно этому принципу, два и более электрона в атомах не могут находиться в одинаковых квантовых состояниях. То есть при обмене электронами их волновая функция меняет знак. Эта антисимметрия, а также ряд других постулатов квантовой физики были «зашиты» в глубинную нейросеть (Deep neural network) сразу. А вот обучали ее уже другим свойствам элементарных частиц — в частности, сложным закономерностям распределения электронов по оболочкам вокруг ядер атомов.

На основе этих данных нейросеть научилась исследовать произвольные молекулы квантовыми методами Монте-Карло. Они подразумевают решение уравнений Шредингера для большого количества частиц. Основная сложность при выполнении таких задач — необходимость больших вычислительных мощностей для определения многочастичной волновой функции. Обычно используют более простые методы, например Теорию функционала плотности (DFT) или связанные кластеры (CC).

Однако такие упрощения создают ряд ограничений и для многих соединений все равно оказываются практически бесполезными. В результате физикам и химикам приходится постоянно искать компромиссы: или низкая точность, но относительно быстрые расчеты, либо высокая точность, но при этом нужно искать, на каком «железе» все это можно обсчитать. А в большинстве случаев выбора особого нет: сложные молекулы не по зубам даже современным суперкомпьютерам и системам распределенных вычислений.

А нейросети PauliNet удалось создать свою методику вычисления волновых функций. Этот алгоритм за вполне разумные сроки способен решать уравнения Шредингера для практически любых молекул.

В приведенных примерах авторы этого искусственного интеллекта определяли свойства ряда соединений за считаные десятки часов работы обычных графических карт персональных компьютеров. Таким образом немецкие ученые нашли новый и чрезвычайно эффективный способ вычисления основного состояния произвольных молекул.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
mostly harmless Есть телега: https://t.me/tempest_exults
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
29 декабря, 20:27
Evgenia Vavilova

Ученые воспроизвели эффект шагов Шапиро, который раньше наблюдали только в твердотельных сверхпроводниках, в новой среде — в облаке атомов, охлажденных до температур, близких к абсолютному нулю.

29 декабря, 10:24
Игорь Байдов

Стандартная инструкция для мужчин перед сдачей спермы для ЭКО — воздержание от двух до семи дней. Этому правилу следуют миллионы пар по всему миру. Однако авторы нового исследования пересмотрели многолетние рекомендации. Они выяснили, что более короткий период воздержания может значительно повысить шансы на долгожданную беременность.

28 декабря, 16:21
Александр Березин

В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.

26 декабря, 15:47
Максим Абдулаев

Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.

27 декабря, 17:46
Адель Романова

После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.

28 декабря, 16:21
Александр Березин

В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.

8 декабря, 13:09
Александр Березин

С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.

17 декабря, 14:19
Игорь Байдов

На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.

23 декабря, 10:51
Игорь Байдов

Среди самых интригующих открытий космического телескопа «‎Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.

[miniorange_social_login]

Комментарии

9 Комментариев
Это, конечно, крутая новость, но индекс важности – 8? Если разбрасываетесь такими цифрами, то может будете объяснять что именно оно изменит в нашей жизни?
    Квантовый уровень постоянно работает именно в вашей жизни. Копирование ДНК идет внутре вас именно на квантовом уровне, и уравнения Шредингера работают там же.
    +
      ещё комментарии
      Так, хорошо. У них в описании рейтинга важности – 9 это появление лекарства от рака. Я понимаю, что оно поменяет. Но вот эта новость о чем? Что именно поменяет главная технология в настоящий момент или недалёком будущем?
        Max Savushkin
        05.01.2021
        -
        0
        +
        Ну, может, способность определять за разумное время свойства многих соединений поможет находить лекарства от рака?
          Поможет, голубчик, еще как поможет. У Фейнмана в его лекциях написано примерно следующее - дайте мне скорости и координаты всех молекул во Вселенной, и я предскажу Вам будущее.
            Max Savushkin
            06.01.2021
            -
            0
            +
            Я помню, пару лет назад на научно-популярной лекции про квантовую теорию, лектор замечал, что на данный момент мы можем точно решать квантовые волновые уравнения только для достаточно простых систем, вроде атома водорода. Для остальных у нас дури не хватает. И каждый шаг на этом путь я, собственно, приветствую
              -
              0
              +
              А без точного решения можно и обойтись. С помощью теории функционала плотности (ТФП, она же DFT) можно приближённо обсчитывать системы из нескольких сотен атомов. Но эта "приближённость" такая, что даже знай мы точное решение - мы не смогли бы в эксперименте отличить его от приближённого.
        -
        0
        +
        Если учесть, что даже теория функционала плотности, которая позволяет рассчитывать системы из пары-тройки сотен атомов с сумасшедшей точностью, совершила революцию в квантовой химии и физике и позволила человечеству узнать такое, о чём оно ещё в 60-е даже мечтать не могло, то технология, которая позволит с такой же точностью считать десятки и сотни тысяч атомов, поменяет всё ещё больше. Что поменяет? Например, позволит разработать, например, катализаторы химических процессов, новые материалы с заданными свойствами, можно будет рассчитать биохимические реакции, в том числе и для предсказания эффектов лекарств. И многое другое. Это и сейчас делается вовсю, но ограничения на число атомов изрядно тормозят процесс... Впрочем, не прочитав исходную статью, я не берусь, насколько описанный метод точен и насколько он универсален. Как он соотносится по скорости счёта и точности с другими методами, которые сейчас используются для расчёта больших систем: DFT-B, QM/MM и проч.
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно