Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Мутация «куриной слепоты» помогает акулам видеть в темноте
Китовые акулы могут плавать и у поверхности воды, и на больших глубинах, куда свет практически не проникает. Их зрение адаптировано к таким переходам и быстро переключается с «ночного» на «дневной» режим работы. Происходит это благодаря мутации, которая делает пигменты чувствительными к температуре, а у людей вызывает наследственную неспособность видеть при слабом свете.
Китовые акулы — самые большие из современных рыб, иногда набирающие более 15 метров в длину. Питаются они планктоном, поэтому большую часть времени держатся ближе к поверхности, процеживая воду. Однако иногда акулы погружаются на глубину более километра, куда проникают лишь редкие лучи синей части спектра. При этом их зрение быстро переходит с одних светочувствительных пигментов на другие.
Дело в том, что при ярком и тусклом освещении работают разные светочувствительные пигменты. За восприятие слабого света отвечает пигмент родопсин. Он способен улавливать широкий диапазон волн, включая синие, хотя не позволяет различать отдельные цвета. Родопсин состоит из двух компонентов: белка (опсина) и ретиналя (производного витамина А). На свету пигмент распадается, но в темноте происходит постепенный синтез новых молекул родопсина.
У людей этот процесс занимает около получаса. Однако китовые акулы выработали уникальный механизм адаптации, который при изменении глубины быстро «переключает» их зрение между «дневным» и «ночным» режимами работы. Он связан с особыми мутациями в гене родопсина, делающими пигмент чувствительным к температуре. Об этом рассказывается в статье биологов из Городского университета Осаки, опубликованной в журнале PNAS.
Шигехиро Кураку (Shigehiro Kuraku) и его коллеги сравнили гены, активные в тканях глаза у китовых акул и у их родственников — зебровых акул, которые не опускаются на столь большие глубины. Выяснилось, что ген родопсина у китовых акул несет две мутации, меняющие 94-ю и 178-ю аминокислоты в цепочке белка. Первую из этих замен ранее обнаружили у морского окуня E. daemelii, который как раз водится на глубине и почти не поднимается к поверхности. Поэтому именно с ней ученые связали способность китовых акул видеть при слабом освещении.
Кроме того, аналогичная мутация встречается у некоторых людей с наследственной никталопией, или «куриной слепотой» — неспособностью видеть при слабом освещении. Она дестабилизирует родопсин, не позволяя накапливать достаточное количество пигмента для того, чтобы видеть в сумерках.
Ученые сравнили «обычные» родопсины с такими же пигментами, но несущими замены аминокислот 94 и 178, как у китовых акул. Выяснилось, что эти замены делают белок чувствительным к температуре. Пока рыба держится на глубине, где вода холодна, пигмент остается стабильным, обеспечивая не цветное, но чувствительное к слабому свету «ночное» зрение. А когда акула поднимается выше, где становится теплее, родопсин быстро деградирует, позволяя работать другим пигментам, которые воспринимают множество разных красок.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Долгие годы исследователи полагали, что внутренняя структура полости носа неандертальцев была устроена таким образом, что помогала этим людям переносить холод. Однако авторы нового исследования поставили под сомнение эту гипотезу. Ученые впервые проанализировали носовую полость неандертальца в хорошо сохранившемся черепе и выяснили, что его нос не был приспособлен к суровому климату.
В 2025 году российская атомная отрасль отмечает 80-летие — от первого ядерного реактора до космических амбиций и повседневных чудес. Знаете ли вы, когда ученые признали реальность атомов, сколько известно видов радиоактивного распада или когда на полях стали выращивать мутантов?
Согласно учебникам истории, в бронзовом веке в казахской степи кочевали лишь немногочисленные племена со своими стадами. Но в начале 2000-х там обнаружили древнее поселение с остатками крупных домов, которое могло быть административным либо культурным центром. Это навело ученых на мысль, что жизнь в степи складывалась куда сложнее и была более организованной, чем предполагалось. Международная команда ученых представила новые результаты исследования этого поселения и выяснила, что на самом деле оно представляло собой крупнейший в этом регионе протогородской центр с масштабным производством оловянистой бронзы.
Ю-Цон Тан (YuCong Tang) — концептуальный художник из Китая. Научно-фантастические мотивы — одно из основных направлений его творчества. Он исследует, как научные открытия и технологии будущего трансформируют среду обитания.
В 2025 году российская атомная отрасль отмечает 80-летие — от первого ядерного реактора до космических амбиций и повседневных чудес. Знаете ли вы, когда ученые признали реальность атомов, сколько известно видов радиоактивного распада или когда на полях стали выращивать мутантов?
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии