Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Повторяющиеся радиосигналы из «мертвой» галактики озадачили ученых
Астрономы зарегистрировали необычную вспышку под названием «быстрый радиовсплеск» — мгновенный выброс сильнейшего радиоизлучения. Причем случился он в галактике, где они, по имеющимся представлениям, не должны происходить.
В 2007 году, во время уже привычного прослушивания пульсирующих радиосигналов нейтронных звезд, астрономы столкнулись с чем-то из ряда вон выходящим: вместо обычного — идущего, к примеру, через каждые пару секунд — сигнала поступил лишь один, который продлился доли секунды, но был несравненно более сильным, чем «классический» сигнал от нейтронных звезд. Такую энергию, которую мгновенно испустил необычный источник, Солнце вырабатывает несколько дней подряд. Впоследствии выяснилось, что источник расположен в Малом Магеллановом Облаке. Но что именно это было, по сей день окончательно не установлено.
С тех пор из космоса получили несколько тысяч подобных «выдающихся» сигналов. Их назвали быстрыми радиовсплесками. Большинство поступили однократно, но многие повторяются, причем некоторые приходят через равные промежутки времени. Все это требует убедительного объяснения.
Пока главные подозреваемые — опять же, нейтронные звезды, или, как их еще называют, пульсары. На самом деле это сжавшиеся остатки «умерших» звезд, их бывшие ядра. «При жизни», то есть на основном этапе своей эволюции, их родительские звезды были массивными: «весили», скажем, в 10-15 раз больше Солнца. Соответственно, у такой звезды одно только ядро может «весить» в два раза больше нашего светила целиком.
Когда в этом ядре больше нет водорода и вообще чего-либо подходящего для термоядерного синтеза, уже ничто не оказывает сопротивления неумолимой гравитации. И она начинает сжимать это ядро. В конце концов доходит до того, что от такого давления рушится структура атомов звездного вещества, оно превращается в сгусток нейтронов и протонов размером с Москву. Поэтому такие звезды называют нейтронными.
Есть мнение, что в самом начале, то есть сразу после появления, нейтронная звезда обладает экстремальным магнитным полем. Столь необычные «экземпляры» получили отдельное название — магнетары. Именно в них видят самый вероятный источник быстрых радиовсплесков. Предположительно, в момент их появления, то есть завершения коллапса звездного ядра, оно испускает настолько сильную радиовспышку.
Но в данном случае особенно примечательно то, что звезды — прародительницы нейтронных — по космическим меркам, бабочки-однодневки. Они «сгорают» за пару десятков миллионов лет и взрываются сверхновыми, то есть сбрасывают все свои внешние слои. Таким образом, они, можно сказать, «вчера родились». Значит, совсем недавно в галактике произошло образование новых звезд.
В принципе для большинства галактик в этом в общем-то нет ничего особенно удивительного, но есть галактики такие, в которых давно произошла «демографическая катастрофа»: новых звезд там нет и не предвидится. Это эллиптические галактики — огромные, без каких-то внешних особенностей. Астрономы продолжают выяснять, почему же у них так плохо с «рождаемостью». Недавно, кстати, предложили версию, что крайне активная сверхмассивная черная дыра в центре галактики может «выдувать» из нее межзвездный газ, то есть лишать «сырья» для звездного «производства».
В любом случае новый, обнаруженный в 2024 году быстрый радиовсплеск FRB 20240209A зафиксировали как раз там, где его меньше всего ожидали «услышать» — на окраине эллиптической «безжизненной» галактики. Расположена она там, откуда свет до нас летел без малого два миллиарда лет.
Как рассказала международная команда астрофизиков в недавней статье для издания The Astrophysical Journal Letters, быстрый радиовсплеск там зарегистрировали целых 22 раза. То есть он оказался повторяющимся, и это еще больше усложняет вопрос его происхождения. Чтобы получить в какой-то галактике хотя бы единичный быстрый радиовсплеск от только что возникшего магнетара, необходимо, чтобы в этой галактике недавно родились новые звезды.
Поэтому ученые рассматривают другие варианты природы этого явления: к примеру, что это результат столкновения и слияния двух нейтронных звезд или, например, белых карликов. Еще подозревают, что так мог схлопнуться белый карлик, который поглощал притянутое им вещество.
Ученые МФТИ представили теоретическую работу, посвященную введению дополнительных соотношений неопределенности Гейзенберга в (1+3)-мерном пространстве Минковского и в (1+4)-мерной расширенной модели пространства. Это исследование может изменить наши представления о времени, пространстве и материи.
Известно уже несколько десятков экзопланет, которые по размерам и массе сравнимы с Землей, обращаются вокруг карликовых звезд и при этом располагаются в зоне потенциальной обитаемости — там, где океаны при наличии не испарятся и не замерзнут полностью. Проблема в том, что пока ни у одной из этих планет не наблюдается достаточно плотной атмосферы. Ученые решили разобраться, в чем дело.
В центре нашей Галактики расположена сверхмассивная черная дыра Стрелец A*. Для ученых это прекрасная возможность наблюдать с близкого расстояния, как она излучает, поглощает и выбрасывает материю. Аккреционный диск Стрельца A* надут ветрами от молодых, теряющих массу звезд. Что происходит в этом неспокойном регионе, до сих пор не вполне ясно. Теперь ученые представили результаты самого продолжительного и подробного исследования центра Млечного Пути, проведенного телескопом NASA «Джеймс Уэбб» в 2023-2024 годах.
Пролетевший через Солнечную систему в 2017 году астероид Оумуамуа произвел неизгладимое впечатление в том числе своей беспрецедентно вытянутой формой. Астрономы попытались рассчитать, как он мог стать таким и почему в Солнечной системе мы не наблюдаем ничего подобного.
Ученые МФТИ представили теоретическую работу, посвященную введению дополнительных соотношений неопределенности Гейзенберга в (1+3)-мерном пространстве Минковского и в (1+4)-мерной расширенной модели пространства. Это исследование может изменить наши представления о времени, пространстве и материи.
Известно уже несколько десятков экзопланет, которые по размерам и массе сравнимы с Землей, обращаются вокруг карликовых звезд и при этом располагаются в зоне потенциальной обитаемости — там, где океаны при наличии не испарятся и не замерзнут полностью. Проблема в том, что пока ни у одной из этих планет не наблюдается достаточно плотной атмосферы. Ученые решили разобраться, в чем дело.
В 2022-2025 годах страны Западной Европы попытались отказаться от природного газа из России. Автор новой работы показал, что получившиеся при этом результаты были во многом противоположны целям.
Пролетевший через Солнечную систему в 2017 году астероид Оумуамуа произвел неизгладимое впечатление в том числе своей беспрецедентно вытянутой формой. Астрономы попытались рассчитать, как он мог стать таким и почему в Солнечной системе мы не наблюдаем ничего подобного.
Астрономы обнаружили, что почти треть всех наблюдаемых галактик во Вселенной объединены в пять самых широкомасштабных структур — галактические сверхскопления. На составленной учеными трехмерной карте одно особенно выделяется своими рекордными размерами: простирается на миллиард с лишним световых лет.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии