• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
17 апреля, 13:04
ФизТех
190

Фотоловушки с искусственным интеллектом помогут защитить диких животных

❋ 4.5

Технологии искусственного интеллекта сегодня находят применение в самых разных сферах. В том числе в экологии и области охраны животных. Один из примеров — разработка ученых из МФТИ. Они предложили использовать нейросети для обработки данных, полученных с фотоловушек. Программа сортирует и обрабатывает до одного миллиона изображений в сутки, а ее точность — свыше 95%, при этом она быстрее ученого-эксперта на несколько порядков.

Фотоловушки с искусственным интеллектом помогут защитить диких животных – иллюстрация к материалу на Naked Science
Выдра, сфотографированная с помощью фотоловушки / © Kalyan Varma, en.wikipedia.org

Исследование опубликовано в журнале Scientific and Technical Information Processing. Как объяснили ученые, фотоловушки — это устройства, которые фиксируют изображения животных и других объектов в их естественной среде. В России около несколько тысяч особо охраняемых природных территорий, где используют эти проборы.

«Обычно при обнаружении объекта устройство делает от одного до семи кадров. Проблема в том, что до 70% полученных фотографий неинформативны. Это происходит как по причине ложного срабатывания камеры (например, из-за движения веток или снега), так и неудачной позы животного. При этом обработка изображений вручную происходит крайне трудоемко. Чтобы оптимизировать задачу, группа разработала алгоритм, который сочетает два процесса: выявление и узнавание объектов и их последующую классификацию», — рассказал Владислав Ефремов, один из разработчиков, аспирант МФТИ Владислав Ефремов.

На первом этапе система анализирует изображения и устанавливает, содержат ли они животных. Для этой задачи исследователи протестировали несколько архитектур и выбрали нейронную сеть YOLOv5-L6. Эта модель адаптирована в том числе для таких условий, как низкая освещенность или перекрытие объекта другими предметами. При анализе тестовых данных точность этой программы составила 98,.5 %.

Следующий этап работы системы посвящен определению видовой принадлежности животных. Для этих целей исследователи задействовали сверточные нейронные сети. Этот алгоритм «изучает» изображение по маленьким фрагментам и выделяет ключевые детали — линии, углы и текстуры. Таким образом, сначала искусственный интеллект находит простые элементы (например, контуры), а затем собирает их в сложные (глаза, лапы, морды животных). Такие же нейросети, в частности, лежат в основе технологии распознавания лиц.

На этом этапе, по мнению исследователей, лидером стала архитектура ResNeSt-101. Она продемонстрировала точность классификации 98,.339 %. Помимо видов, программа также определяет подвиды животных.

Фотоловушки с искусственным интеллектом помогут защитить диких животных – иллюстрация к материалу на Naked Science
Примеры кадров с фотоловушек из заповедников (слева направо): 1) Воронежский (косули); 2) Дагестанский (волки); 3) Саяно-Шушенский (росомахи); 4) Сихотэ-Алинский (тигры) / © Scientific and Technical Information Processing

«Для обучения нейронных сетей команда использовала более миллиона фотографий и 65 тысяч видеороликов, полученных с фотоловушек в различных заповедниках России. Эти данные были тщательно размечены, что позволило обучить модели с высокой точностью распознавать объекты и классифицировать их», — поделился Владислав Ефремов.

В настоящее время разработанная система способна обрабатывать до миллиона изображений в сутки. При этом точность распознавания достигает 95%, что сопоставимо с результатами, которые показывают эксперты-экологи. При этом программа выполняет работу быстрее на несколько порядков.

Как объяснили разработчики, предложенная нейросеть хорошо адаптируется под разные видовые составы и может быть задействована в любом из заповедников России. В будущем такие системы возьмут на себя большую часть рутинного труда экологов, позволяя им сосредоточиться на более важных задачах.

Дальнейшие перспективы исследования связаны с интеграцией фотоловушек и программного комплекса посредством систем спутниковой передачи данных. Также возможна разработка мобильных приложений для полевых исследований и создание «умных» фотоловушек со встроенными «мозгами» — нейросетевыми моделями, которые автоматически удаляют неудачные фото.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Московский физико-технический институт (национальный исследовательский университет), известен также как Физтех — ведущий российский вуз по подготовке специалистов в области теоретической, экспериментальной и прикладной физики, математики, информатики, химии, биологии и смежных дисциплин. Расположен в городе Долгопрудном Московской области, отдельные корпуса и факультеты находятся в Жуковском и в Москве.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
18 августа, 11:11
Денис Яковлев

За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».

19 августа, 15:54
Елена Авдеева

К любопытным выводам привели наблюдения японских ученых за пестролицыми буревестниками. Оказалось, эти птицы испражняются в основном на лету, намеренно избегая такой возможности на поверхности воды. Очевидно, предположили исследователи, это облегчает движения в воздухе взрослым особям с добычей во рту.

19 августа, 10:44
Адель Романова

Ученые заново просмотрели старые записи о наблюдениях с помощью телескопа «Большое Ухо», который поймал знаменитый радиосигнал Wow!, и обнаружили данные о еще двух похожих событиях. Астрономы пришли к выводу, что это не могли быть обыкновенные земные радиопомехи и во всех трех случаях источник действительно располагался в глубоком космосе.

16 августа, 19:09
Адель Романова

Астрономы подсчитали, что с поверхности летящего по Солнечной системе межзвездного объекта 3I/ATLAS каждую секунду испаряется около 40 килограммов водяного льда. Такую сильную кометную активность он проявил, будучи в три с половиной раза дальше Земли от Солнца. По мнению ученых, это довольно необычно.

15 августа, 08:25
Любовь С.

Изображение блазара PKS 1424+240, полученное с помощью радиоинтерферометра VLBA, напомнило астрономам легендарное «Око Саурона» из «Властелина колец» — джет, пронизывающий кольцеобразное магнитное поле объекта, устремлен к нашей планете, а сам блазар может оказаться одним из наиболее ярких источников нейтрино в космосе.

18 августа, 11:11
Денис Яковлев

За последнее десятилетие ученые создали несколько сложных систем «мозг — компьютер», которые позволяли преобразовывать мозговую активность людей, лишившихся способности говорить из-за различных заболеваний, в речь. Однако до сих пор удавалось расшифровать лишь небольшое количество слов. Теперь в США создали алгоритм, благодаря которому удалось распознать до 54 процентов «речи».

25 июля, 07:47
Адель Романова

Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.

6 августа, 20:59
Татьяна Пичугина

Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.

22 июля, 14:44
ФизТех

Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет.  Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно