Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект ускорил поиск материалов для авиации и космоса
Ученые из Сколтеха и МФТИ при помощи машинного обучения заметно ускорили поиск кандидатов металлических сплавов, из которых экспериментаторы отбирают материалы для ракетостроения и других высокотехнологичных отраслей.
Сейчас устойчивые сплавы ищут методами, которые сопряжены с риском упустить перспективный материал либо требуют запредельно долгих вычислений. Новый же метод, представленный в журнале npj Computational Materials, использует машинное обучение, чтобы ускорить перебор вариантов и сделать его более исчерпывающим. Исследование поддержано грантом РНФ.
Чистые металлы обычно уступают по своим свойствам сплавам из нескольких металлов и других элементов вроде углерода или кремния. Меняя состав и соотношение элементов в сплаве, можно регулировать его характеристики: прочность, ковкость, температуру плавления, устойчивость к коррозии, электрическое сопротивление и многие другие. Так материаловеды ищут сплавы с более совершенными свойствами для авиации, космических технологий, машиностроения и других областей: электротехники, строительства, медицинских инструментов и проч.
Однако новый сплав попадает в инструментарий инженера-проектировщика лишь тогда, когда его свойства измерены в ходе эксперимента. Проблема в том, что экспериментальный синтез и проверка материалов-кандидатов в лаборатории — это долгий и дорогостоящий процесс. Более того, даже моделирование сплавов на компьютере требует огромных затрат времени и ресурсов и потому не позволяет перебрать много вариантов.
«Потенциальных кандидатов очень много, потому что много переменных: какие химические элементы в составе сплава, в каких соотношениях, какая кристаллическая решетка и так далее, — рассказал один из авторов статьи, заведующий Лабораторией методов искусственного интеллекта для разработки материалов Центра ИИ Сколтеха Александр Шапеев. — Скажем, в простейшей системе двух элементов, ниобия и вольфрама, если рассмотреть набор из 20 атомов в ячейке кристаллической решетки, вам уже придется моделировать более миллиона различных комбинаций, 2 в степени 20, без учета симметрии».
Используемые для моделирования и отбора перспективных сплавов эволюционные алгоритмы, графовые нейросети, метод роя частиц и другие подходы хорошо работают при точечном поиске кандидатов, без перебора всех возможных комбинаций. Но в этом случае появляется риск упустить материал с выдающимися характеристиками.
«Эти подходы опираются на фундаментальное физическое описание процесса, прямые квантово-механические расчеты, — пояснила магистрант программы „Науки о данных“ Сколтеха и выпускница МФТИ Виктория Зинькович, первый автор научного исследования. — Это очень точные, но сложные и долгие расчеты. Мы же используем машинно-обучаемые потенциалы, которые, напротив, отличаются высокой скоростью вычислений и позволяют перебрать все возможные комбинации до некоторой границы отсечения, например до 20 атомов в суперъячейке. А значит, мы не пропустим хороших кандидатов».
Подход прошел валидацию на двух системах. Во-первых, тугоплавкие металлы: ванадий, молибден, ниобий, тантал, вольфрам. Во-вторых, медь и благородные металлы: золото, серебро, платина, палладий. В каждой системе рассмотрели по три сочетания атомов. Например, сразу все металлы из второго перечня; или медь, палладий и платина; или только медь и платина. Пять элементов в составе каждого перечня подобраны так, что для них характерна одна и та же кристаллическая решетка. Это упрощает расчеты, поскольку заранее известно, что и у сплава будет та же решетка.
Исследователи применили свой алгоритм поиска к каждому из шести рассмотренных сочетаний атомов — по три сочетания на благородные и на тугоплавкие металлы. Алгоритм ориентирован на оптимизацию физических величин, называемых энергией и энтальпией образования вещества, которые указывают на то, какие сплавы устойчивы, а какие подвержены распаду, то есть самопроизвольному переходу в иную, более стабильную конфигурацию.
О результативности алгоритма можно судить, сравнив результаты поиска с наполнением стандартной базы сплавов, которой пользуются материаловеды в отрасли. Авторы исследования обнаружили 268 новых сплавов, устойчивых при нулевой температуре, которых в базе не было. Так, в системе «ниобий — молибден — вольфрам» подход на основе машинно-обучаемых потенциалов выдал 12 кандидатов, при этом в базе не фигурирует ни одного трехкомпонентного сплава с таким составом.
Теперь свойства новых сплавов можно уточнять и проверять более прицельным моделированием и экспериментами, чтобы установить, какие из этих материалов перспективны для практических применений. «Использование компьютерного моделирования в науке о материалах уже послужило началом для открытия множества новых промышленно значимых сплавов, имеющих спектр применений от деталей кузовов автомобилей до баков для хранения водорода в ракетном топливе», — добавила Зинькович. Тем временем сами авторы нового алгоритма, по словам ученой, планируют применить свой подход к сплавам с другими составами и кристаллическими решетками.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Чтобы охотиться при температурах ниже нуля, пауки рода Clubiona выработали особые белки-антифризы. Изучив членистоногих, собранных в грушевых садах неподалеку от города Брно (Чехия), ученые раскрыли молекулярный механизм, позволяющий этим паукам не впадать в зимнюю спячку.
Наблюдая за галактикой CANUCS-LRD-z8.6 с помощью космической обсерватории «Джеймс Уэбб», астрономы обнаружили в ее центре сверхмассивную черную дыру. Хотя она существовала всего через 500 миллионов лет после Большого взрыва, ее масса оказалась рекордной для столь ранней эпохи.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Бразильские зоологи выяснили, каких именно насекомых и пауков ловят домашние кошки в городах. Для этого использовали не полевые наблюдения, а анализ социальных сетей. Просмотрев более 17 000 видео и фото в TikTok и на фотостоке iStock, ученые нашли 550 записей кошачьей охоты. Самая частая добыча — кузнечики, сверчки, цикады и тараканы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
