Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект ускорил поиск материалов для авиации и космоса
Ученые из Сколтеха и МФТИ при помощи машинного обучения заметно ускорили поиск кандидатов металлических сплавов, из которых экспериментаторы отбирают материалы для ракетостроения и других высокотехнологичных отраслей.
Сейчас устойчивые сплавы ищут методами, которые сопряжены с риском упустить перспективный материал либо требуют запредельно долгих вычислений. Новый же метод, представленный в журнале npj Computational Materials, использует машинное обучение, чтобы ускорить перебор вариантов и сделать его более исчерпывающим. Исследование поддержано грантом РНФ.
Чистые металлы обычно уступают по своим свойствам сплавам из нескольких металлов и других элементов вроде углерода или кремния. Меняя состав и соотношение элементов в сплаве, можно регулировать его характеристики: прочность, ковкость, температуру плавления, устойчивость к коррозии, электрическое сопротивление и многие другие. Так материаловеды ищут сплавы с более совершенными свойствами для авиации, космических технологий, машиностроения и других областей: электротехники, строительства, медицинских инструментов и проч.
Однако новый сплав попадает в инструментарий инженера-проектировщика лишь тогда, когда его свойства измерены в ходе эксперимента. Проблема в том, что экспериментальный синтез и проверка материалов-кандидатов в лаборатории — это долгий и дорогостоящий процесс. Более того, даже моделирование сплавов на компьютере требует огромных затрат времени и ресурсов и потому не позволяет перебрать много вариантов.
«Потенциальных кандидатов очень много, потому что много переменных: какие химические элементы в составе сплава, в каких соотношениях, какая кристаллическая решетка и так далее, — рассказал один из авторов статьи, заведующий Лабораторией методов искусственного интеллекта для разработки материалов Центра ИИ Сколтеха Александр Шапеев. — Скажем, в простейшей системе двух элементов, ниобия и вольфрама, если рассмотреть набор из 20 атомов в ячейке кристаллической решетки, вам уже придется моделировать более миллиона различных комбинаций, 2 в степени 20, без учета симметрии».
Используемые для моделирования и отбора перспективных сплавов эволюционные алгоритмы, графовые нейросети, метод роя частиц и другие подходы хорошо работают при точечном поиске кандидатов, без перебора всех возможных комбинаций. Но в этом случае появляется риск упустить материал с выдающимися характеристиками.
«Эти подходы опираются на фундаментальное физическое описание процесса, прямые квантово-механические расчеты, — пояснила магистрант программы „Науки о данных“ Сколтеха и выпускница МФТИ Виктория Зинькович, первый автор научного исследования. — Это очень точные, но сложные и долгие расчеты. Мы же используем машинно-обучаемые потенциалы, которые, напротив, отличаются высокой скоростью вычислений и позволяют перебрать все возможные комбинации до некоторой границы отсечения, например до 20 атомов в суперъячейке. А значит, мы не пропустим хороших кандидатов».
Подход прошел валидацию на двух системах. Во-первых, тугоплавкие металлы: ванадий, молибден, ниобий, тантал, вольфрам. Во-вторых, медь и благородные металлы: золото, серебро, платина, палладий. В каждой системе рассмотрели по три сочетания атомов. Например, сразу все металлы из второго перечня; или медь, палладий и платина; или только медь и платина. Пять элементов в составе каждого перечня подобраны так, что для них характерна одна и та же кристаллическая решетка. Это упрощает расчеты, поскольку заранее известно, что и у сплава будет та же решетка.
Исследователи применили свой алгоритм поиска к каждому из шести рассмотренных сочетаний атомов — по три сочетания на благородные и на тугоплавкие металлы. Алгоритм ориентирован на оптимизацию физических величин, называемых энергией и энтальпией образования вещества, которые указывают на то, какие сплавы устойчивы, а какие подвержены распаду, то есть самопроизвольному переходу в иную, более стабильную конфигурацию.
О результативности алгоритма можно судить, сравнив результаты поиска с наполнением стандартной базы сплавов, которой пользуются материаловеды в отрасли. Авторы исследования обнаружили 268 новых сплавов, устойчивых при нулевой температуре, которых в базе не было. Так, в системе «ниобий — молибден — вольфрам» подход на основе машинно-обучаемых потенциалов выдал 12 кандидатов, при этом в базе не фигурирует ни одного трехкомпонентного сплава с таким составом.
Теперь свойства новых сплавов можно уточнять и проверять более прицельным моделированием и экспериментами, чтобы установить, какие из этих материалов перспективны для практических применений. «Использование компьютерного моделирования в науке о материалах уже послужило началом для открытия множества новых промышленно значимых сплавов, имеющих спектр применений от деталей кузовов автомобилей до баков для хранения водорода в ракетном топливе», — добавила Зинькович. Тем временем сами авторы нового алгоритма, по словам ученой, планируют применить свой подход к сплавам с другими составами и кристаллическими решетками.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Исследования ученых РГУ нефти и газа имени И. М. Губкина подтвердили, что технология производства авиационного топлива SAF из растительных лигноцеллюлозных отходов позволит снизить выбросы углекислого газа на 75% по сравнению с нефтяным керосином.
На стыке трех литосферных плит у Красного моря заметили необычный вулканический процесс: где-то магма поднимается равномерным потоком, где-то — по частям. По мнению геологов, такой «пульс» вызван тем, что в некоторых местах магма с большим трудом пытается пробиться на поверхность.
За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».
Снимки с фотоловушек давно стали культурным явлением. Особенно забавными выглядят медведи. Мы с удовольствием смотрим на зверей, попавших в объектив камер в национальных парках: тигр украл фотоловушку, муравьед проехал верхом на муравьеде и так далее. Но не все животные настолько обаятельные. Ученые из США решили развить эмпатию к гремучим змеям, которых многие боятся. Для этого специалисты запустили трансляцию из «мегалогова», где рептилии отдыхают и рожают потомство.
Чтобы понять, как часто за пределами Солнечной системы встречаются миры, похожие на Землю, ученые из Калифорнийского университета (США) провели статистический анализ 517 экзопланет. Результаты показали, что всего три мира, включая наш, соответствуют критериям потенциальной обитаемости. Наиболее перспективными из них оказались Kepler-22b и Kepler-538b.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Вид антилоп, с ледникового периода привыкший к массовым миграциям, пытается вернуться в свой исторический ареал, когда-то достигавший Днепра. Однако их нетипичные для травоядных привычки вызывают сильнейшее отторжение у сельских жителей, предлагающих массово уничтожать их с воздуха. С экологической точки зрения возвращение этих животных весьма желательно, но как примирить их с фермерами — неясно.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии