Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект ускорил поиск материалов для авиации и космоса
Ученые из Сколтеха и МФТИ при помощи машинного обучения заметно ускорили поиск кандидатов металлических сплавов, из которых экспериментаторы отбирают материалы для ракетостроения и других высокотехнологичных отраслей.
Сейчас устойчивые сплавы ищут методами, которые сопряжены с риском упустить перспективный материал либо требуют запредельно долгих вычислений. Новый же метод, представленный в журнале npj Computational Materials, использует машинное обучение, чтобы ускорить перебор вариантов и сделать его более исчерпывающим. Исследование поддержано грантом РНФ.
Чистые металлы обычно уступают по своим свойствам сплавам из нескольких металлов и других элементов вроде углерода или кремния. Меняя состав и соотношение элементов в сплаве, можно регулировать его характеристики: прочность, ковкость, температуру плавления, устойчивость к коррозии, электрическое сопротивление и многие другие. Так материаловеды ищут сплавы с более совершенными свойствами для авиации, космических технологий, машиностроения и других областей: электротехники, строительства, медицинских инструментов и проч.
Однако новый сплав попадает в инструментарий инженера-проектировщика лишь тогда, когда его свойства измерены в ходе эксперимента. Проблема в том, что экспериментальный синтез и проверка материалов-кандидатов в лаборатории — это долгий и дорогостоящий процесс. Более того, даже моделирование сплавов на компьютере требует огромных затрат времени и ресурсов и потому не позволяет перебрать много вариантов.
«Потенциальных кандидатов очень много, потому что много переменных: какие химические элементы в составе сплава, в каких соотношениях, какая кристаллическая решетка и так далее, — рассказал один из авторов статьи, заведующий Лабораторией методов искусственного интеллекта для разработки материалов Центра ИИ Сколтеха Александр Шапеев. — Скажем, в простейшей системе двух элементов, ниобия и вольфрама, если рассмотреть набор из 20 атомов в ячейке кристаллической решетки, вам уже придется моделировать более миллиона различных комбинаций, 2 в степени 20, без учета симметрии».
Используемые для моделирования и отбора перспективных сплавов эволюционные алгоритмы, графовые нейросети, метод роя частиц и другие подходы хорошо работают при точечном поиске кандидатов, без перебора всех возможных комбинаций. Но в этом случае появляется риск упустить материал с выдающимися характеристиками.
«Эти подходы опираются на фундаментальное физическое описание процесса, прямые квантово-механические расчеты, — пояснила магистрант программы „Науки о данных“ Сколтеха и выпускница МФТИ Виктория Зинькович, первый автор научного исследования. — Это очень точные, но сложные и долгие расчеты. Мы же используем машинно-обучаемые потенциалы, которые, напротив, отличаются высокой скоростью вычислений и позволяют перебрать все возможные комбинации до некоторой границы отсечения, например до 20 атомов в суперъячейке. А значит, мы не пропустим хороших кандидатов».
Подход прошел валидацию на двух системах. Во-первых, тугоплавкие металлы: ванадий, молибден, ниобий, тантал, вольфрам. Во-вторых, медь и благородные металлы: золото, серебро, платина, палладий. В каждой системе рассмотрели по три сочетания атомов. Например, сразу все металлы из второго перечня; или медь, палладий и платина; или только медь и платина. Пять элементов в составе каждого перечня подобраны так, что для них характерна одна и та же кристаллическая решетка. Это упрощает расчеты, поскольку заранее известно, что и у сплава будет та же решетка.
Исследователи применили свой алгоритм поиска к каждому из шести рассмотренных сочетаний атомов — по три сочетания на благородные и на тугоплавкие металлы. Алгоритм ориентирован на оптимизацию физических величин, называемых энергией и энтальпией образования вещества, которые указывают на то, какие сплавы устойчивы, а какие подвержены распаду, то есть самопроизвольному переходу в иную, более стабильную конфигурацию.
О результативности алгоритма можно судить, сравнив результаты поиска с наполнением стандартной базы сплавов, которой пользуются материаловеды в отрасли. Авторы исследования обнаружили 268 новых сплавов, устойчивых при нулевой температуре, которых в базе не было. Так, в системе «ниобий — молибден — вольфрам» подход на основе машинно-обучаемых потенциалов выдал 12 кандидатов, при этом в базе не фигурирует ни одного трехкомпонентного сплава с таким составом.
Теперь свойства новых сплавов можно уточнять и проверять более прицельным моделированием и экспериментами, чтобы установить, какие из этих материалов перспективны для практических применений. «Использование компьютерного моделирования в науке о материалах уже послужило началом для открытия множества новых промышленно значимых сплавов, имеющих спектр применений от деталей кузовов автомобилей до баков для хранения водорода в ракетном топливе», — добавила Зинькович. Тем временем сами авторы нового алгоритма, по словам ученой, планируют применить свой подход к сплавам с другими составами и кристаллическими решетками.
Биофизики выявили общие закономерности в коллективном движении клеток, которые сохраняются у бактерий, животных и человека. Клетки демонстрируют скрытую симметрию, известную как конформная инвариантность, в своих вихревых узорах. Это открытие указывает на существование универсальных физических принципов, управляющих живой материей.
Ученые проследили траекторию упавшего в 2014 году на Землю межзвездного метеороида CNEOS14, чтобы выяснить возможное местоположение гипотетической Девятой планеты. Расчеты указали на участок неба в созвездиях Тельца и Ориона, но поиски не увенчались успехом. Это приводит к нескольким возможным выводам: либо планета еще дальше и тусклее, чем предполагалось, либо она в другом месте, либо ее не существует.
Крупная пустыня Тар в XXI веке показала рост площади листвы на 38%. До сих пор ученые не понимали, какие именно события к этому привели. Индийские исследователи попробовали ответить на этот вопрос, но вряд ли он устроит всех их коллег.
Инженеры компании Unitsky String Technologies Inc. разработали несколько вариантов транспортно-инфраструктурных комплексов, способных значительно улучшить пассажирское сообщение в городах, расположенных по обеим берегам крупных водных артерий. Обычно такие мегаполисы сталкиваются с необходимостью строительства дорогих капитальных сооружений — шоссейных мостов, что не всегда подъемно для городского бюджета. Решение белорусских инженеров куда менее ресурсоемкое. Для примера возьмем Ростов-на-Дону, где есть запрос на устойчивое сообщение между левобережной частью города с историческим центром.
До 13 тысяч лет назад в Северной Америке жил вид, который ученые до недавнего времени считали волком. Компания Colossal Biosciences объявила о возрождении этого вымершего вида, но биологические детали ставят ее заявление под серьезное сомнение.
Астроном Дэвид Киппинг использовал данные по последнему общему предку всего живого, чтобы сделать неожиданный вывод: жизнь возникла на нашей планете очень рано и самостоятельно, а не была занесена извне. Если это так, то ее возникновение должно быть достаточно частым событием. По крайней мере, на экзопланетах, по параметрам близким к Земле.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
До 13 тысяч лет назад в Северной Америке жил вид, который ученые до недавнего времени считали волком. Компания Colossal Biosciences объявила о возрождении этого вымершего вида, но биологические детали ставят ее заявление под серьезное сомнение.
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии