Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Найден металл, выдерживающий сверхвысокие температуры и давление
Японские ученые определили металл, способный выдерживать постоянное давление при сверхвысоких температурах. Это открывает возможности для новых разработок в области реактивных двигателей и газовых турбин для генерации электроэнергии.
Первое в своем роде исследование, опубликованное в журнале Scientific Reports, описывает сплав на основе карбида титана (TiC) и легированного молибден-кремний-бора (Mo-Si-B), или MoSiBTiC, высокотемпературная прочность которого определили постоянным воздействием при температурах от 1400 °C до 1600 °C.
«Наши эксперименты показывают, что сплав MoSiBTiC невероятно прочен по сравнению с передовыми однокристальными никелевыми суперсплавами, часто используемыми в горячих отсеках тепловых двигателей вроде авиационных реактивных двигателей и газовых турбин для генерации электроэнергии, — говорит ведущий автор исследования профессор Киосуке Ёсими из Высшей инженерной школы Университета Тохоку. — Эта работа предполагает, что MoSiBTiC, будучи высокотемпературным материалом, не входящим в число суперсплавов на основе никеля, — многообещающий кандидат для применения в этой области».
Ёсими и его коллеги сообщили о нескольких свойствах, указывающих на выдерживание сплавом разрушительных сил при сверхвысоких температурах без деформации. Они также наблюдали поведение сплава при воздействии на него возрастающих сил, когда в нем стали образовываться и расти трещины, пока он в итоге не разломился.

Эффективность тепловых двигателей — ключ к будущей добыче энергии из ископаемого топлива и его дальнейшего преобразования в электроэнергию и двигательную силу. Улучшение их функциональности может определить, насколько эффективно мы преобразуем энергию. Ползучесть — способность материала выдерживать воздействие при сверхвысоких температурах — важный фактор, так как повышенные температуры и давление приводят к деформации. Понимание ползучести материала может помочь инженерам сконструировать эффективные тепловые двигатели, способные выдерживать экстремальные температурные условия.
Исследователи испытывали ползучесть сплава на протяжении 400 часов при давлениях от 100 до 300 МПа. Все эксперименты проводили на управляемой компьютером испытательной установке в вакууме для предупреждения окисления материала и попадания на него влаги, из-за которой на сплаве могла образоваться ржавчина.
В исследовании говорится, что сплав испытывает большее удлинение при уменьшении воздействия. Ученые объясняют, что ранее такое поведение наблюдалось только у сверхпластичных материалов, способных противостоять преждевременному разрушению.
Эти обнаружения — важный знак для использования MoSiBTiC в системах, функционирующих на экстремально высоких температурах — вроде систем преобразования энергии в автомобилях, силовых установок и двигательных систем в авиации и ракетостроении. Исследователи сообщают, что им еще предстоит провести несколько дополнительных микроструктурных анализов для полного понимания механики сплава и его способности восстанавливаться после воздействия высоких давлений при высоких температурах.
«Наша конечная цель — изобрести новаторский сверхвысокотемпературный материал, превосходящий суперсплавы на основе никеля, и заменить лопасти турбин высокого давления, сделанные из никелевых суперсплавов, новыми турбинными лопастями из сверхвысокотемпературного материала, — говорит Ёсими. — Поэтому далее мы должны улучшить устойчивость MoSiBTiC к окислению, разработав сплав и не повредив его исключительные механические свойства. И это сложная задача».
Физики не понимали, как легкие ядра не разрывает экстремально высокими температурами. Оказалось, что они образуются не в самом сердце столкновения.
Недавние расчеты показали, что небольшую вытянутость и наклон орбит планет-гигантов Солнечной системы лучше всего объясняет появление в ней массивного объекта из межзвездного пространства — свободноплавающей планеты или коричневого карлика. Интересно, что эта версия предполагает изначальное присутствие еще одного мира.
Во Франции достраивают международный термоядерный реактор ИТЭР, в проекте которого Россия выступила и инициатором, и поставщиком ключевых компонентов: например, таких, как сверхпроводники, позволяющие магнитам токамака удерживать плазму при температуре до полутора сотен миллионов градусов. Но одновременно с этим проектом в нашей стране работают над национальным проектом токамака с реакторными технологиями (ТРТ), строительство которого начинается во второй половине 2020-х годов. Что будет отличать его от ИТЭР и других реакторов-предшественников — в инфографике Naked Science.
В некоторых звездных системах, близких к Солнцу, наблюдают массивные скопления небольших небесных тел наподобие нашего пояса Койпера. Недавние расчеты показали, что прямо сейчас два-три объекта оттуда могут пролетать по Солнечной системе. Впрочем, ни к одному из уже открытых межзвездных гостей это не относится.
Новые материалы позволяют построить атомные реакторы и для полетов в космос, и для получения зеленой и более дешевой электроэнергии на Земле. Технологии, лежащие в основе их создания, помогают даже выращивать биологические ткани для замены поврежденных. Мы поговорили обо всем этом с научным руководителем направления «Материалы и технологии» Госкорпорации «Росатом», первым заместителем директора частного учреждения «Наука и инновации» Алексеем Дубом.
Ученые впервые на практике реализовали знаменитый мысленный эксперимент с «подвижной щелью», который обсуждали Бор и Эйнштейн почти 100 лет назад. Опыт с отдельным атомом показал, что попытка отследить путь частицы неизбежно разрушает ее волновые свойства.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
Позавчера, 27 ноября 2025 года, при запуске космонавтов к МКС на стартовую площадку № 31 упала кабина обслуживания стартового комплекса. Это означает, что новые пуски оттуда до починки невозможны. К сожалению, в 2010-х годах, в рамках «оптимизации» расходов, резервную площадку (с которой летал Юрий Гагарин) упразднили. Поэтому случилось беспрецедентное: в XXI веке страна с пилотируемой космической программой осталась без средств запуска людей на орбиту. Пока ремонт не закончится, проблема сохранится. Чем это может грозить?
Японские биологи повторили античную технологию производства вина из изюма, чтобы выяснить механизм его брожения. Исследователи показали, что сушеный виноград, в отличие от свежего, накапливает на поверхности дикие дрожжи и способен превращать воду в алкоголь без внесения дополнительных заквасок.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Последние комментарии