• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
18.12.2019, 19:09
София Жаботинская
8 960

Искусственный интеллект нашел не замеченные человеком признаки, связанные с рецидивом рака

Нейросеть лучше живых врачей увидела признаки повторного образования опухолей

Пример изображения, на котором нейросеть выделяет зону возможной патологии (обозначена темно-красным цветом)
Пример изображения, на котором нейросеть выделяет зону возможной патологии (обозначена темно-красным цветом) / Yamamoto, Kimura, Tsuzuki et al., Nature Communications, 2019 / Автор: Татьяна Соловьёва

В статье, опубликованной в Nature Communications, ученые из Центра передового интеллекта RIKEN в Японии рассказали о новых возможностях для медицины, которые продемонстрировал созданный ими искусственный интеллект.

Технология, разработанная японскими учеными в сотрудничестве с рядом университетских больниц, смогла успешно обнаружить на изображениях образцов ткани больных раком соответствующие особенности без аннотаций, которые могли бы понять врачи-люди. Кроме того, ИИ нашел признаки, коррелирующие с риском рецидива рака, которые ранее не отмечались патологами. В результате прогноз компьютерной программы оказался точнее, чем диагностика на основе заключения медиков. Самые лучшие результаты показали прогнозы, объединявшие предсказания ИИ с предсказаниями врачей.

Данные работы, по мнению авторов, могут поспособствовать пониманию того, как можно безопасно использовать ИИ в медицине, помогая решить проблему «черного ящика». Пока люди сами обучают ИИ, невозможно получить от него знания сверх того, что известно нам на сегодня. Авторы работы использовали технологию «обучение без учителя». Вместо того, чтобы «обучать» ИИ медицинским знаниям, они задействовали неконтролируемые глубокие нейронные сети, известные как автоэнкодеры. Исследователи разработали метод преобразования обнаруженных ИИ функций — изначально только чисел — в изображения с высоким разрешением, которые могут быть понятны людям.

Для этого команда взяла 13 188 снимков препаратов тканей предстательной железы в больнице Nippon Medical School Hospital (NMSH). Полные данные были очень большого объема. При делении на фрагменты для глубоких нейронных сетей получилось около 86 миллиардов патчей. Обработка массива выполнялась на мощном суперкомпьютере AIP RAIDEN. Без диагностической аннотации ИИ научился использовать патологические изображения из 11 миллионов патчей.

Искусственный интеллект нашел не замеченные человеком признаки, связанные с рецидивом рака – иллюстрация к материалу на Naked Science
Примеры изображений, с которыми работала нейросеть. a — группа изображений, полученная от пациентов с биохимическими признаками рецидива, b — изображения, полученные от контрольной группы / © Yamamoto, Kimura, Tsuzuki et al., Nature Communications, 2019

Признаки, обнаруженные ИИ, включали диагностические критерии рака по шкале Глисона, использующиеся во всем мире. Кроме этого, он обнаружил особенности в строме — специальной соединительной ткани, которая поддерживает внутренние органы, — в областях, не связанных с раком. Об этих специфических признаках рецидива эксперты ранее не знали, а между тем с точки зрения прогноза это оказалось важным и полезным критерием диагностики, даже более точным, чем, собственно, диагностика по шкале Глисона.

Протестировав ИИ на данных, полученных в NMSH, ученые проверили свои выводы на снимках пациентов из других госпиталей, чтобы исключить особенности техники или протоколов, — и результаты подтвердились.

По словам первого автора работы Йоичиро Ямамото, эта технология может внести большой вклад в персонализированную медицину. Она способна помочь делать высокоточные предсказания рецидива рака, основываясь на изображениях образцов. Как минимум она пригодна в случае рака предстательной железы, на котором тестировалась, но, вероятно, и для многих других.

Искусственный интеллект нашел не замеченные человеком признаки, связанные с рецидивом рака – иллюстрация к материалу на Naked Science
Распознанные нейросетью визуальные признаки возможного рецидива (изображения a—e) и изображения аналогичных участков предстательной железы пациентов без риска рецидива / © Yamamoto, Kimura, Tsuzuki et al., Nature Communications, 2019

ИИ может помочь отыскать новые особенности заболеваний, еще не зафиксированные людьми. Кроме повышения точности диагностики и улучшения качества медицинской помощи, искусственный интеллект на основе подобных технологий может быть использован для поиска новых знаний в других областях вне медицины.

Ранее ученые из Научно-исследовательского института Скриппса в США научились «пробуждать» лимфоциты для борьбы с раком, а специалисты компании Toshiba разработали метод диагностики 13 видов рака по одной капле крови.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
14 августа, 08:27
Полина Меньшова

Когда модели искусственного интеллекта ошибаются и выдают неверный ответ на запрос, пользователи пытаются выяснить причину этой ошибки, задавая вопрос самому ИИ-помощнику. Историк технологий Бендж Эдвардс объяснил, почему делать так нет смысла и как это связано с устройством нейросетей.

13 августа, 10:56
Юлия Трепалина

Ученым известны случаи близких контактов усатых китов (Mysticeti) и их дальних родственников дельфинов (Delphinidae) в дикой природе, но подобные взаимодействия ранее считали редкостью. Австралийские специалисты, изучающие китообразных, собрали почти две сотни видео и фото со всего мира, опровергающих это мнение. Судя по свидетельствам, чаще всего подобное «общение» происходит между горбатыми китами и дельфинами-афалинами.

14 августа, 20:16
Редакция Naked Science

76 процентов современных ученых используют ИИ-инструменты в своей работе, но большинство осваивает их самостоятельно, сталкиваясь с трудностями.

12 августа, 11:29
Юлия Трепалина

Влияет ли формат знакомства на качество последующих романтических отношений в паре? Научные данные на этот счет разнятся. Новое исследование по вопросу представила группа психологов из Польши, Австралии и Великобритании. В попытке понять, при каком сценарии удовлетворенность отношениями выше, а любовь крепче — когда двое нашли друг друга в Сети или познакомились в жизни, — ученые опросили свыше 6000 тысяч человек из разных стран.

9 августа, 15:19
Любовь С.

Чтобы проверить законы физики в условиях, недоступных на Земле, астрофизик Козимо Бамби (Cosimo Bambi) из Фуданьского университета (Китай) предложил отправить к центру ближайшей черной дыры «нанокрафт» — крошечный зонд, способный добраться до цели примерно за 60-75 лет благодаря наземной лазерной установке.

13 августа, 10:56
Юлия Трепалина

Ученым известны случаи близких контактов усатых китов (Mysticeti) и их дальних родственников дельфинов (Delphinidae) в дикой природе, но подобные взаимодействия ранее считали редкостью. Австралийские специалисты, изучающие китообразных, собрали почти две сотни видео и фото со всего мира, опровергающих это мнение. Судя по свидетельствам, чаще всего подобное «общение» происходит между горбатыми китами и дельфинами-афалинами.

25 июля, 07:47
Адель Романова

Прибывшая из межзвездного пространства предполагаемая комета 3I/ATLAS движется по траектории, максимально удобной для гравитационных маневров управляемого корабля, при этом возможность ее отслеживания с Земли практически минимальна. По мнению некоторых ученых, такое «поведение» объекта наводит на определенные мысли.

6 августа, 20:59
Татьяна Пичугина

Примерно 12 800 лет назад в Северном полушарии началось резкое изменение климата, которое сопровождалось вымиранием мегафауны и угасанием культуры Кловис. Такое могло произойти, например, из-за прорыва пресных вод в Атлантику или мощного вулканического извержения. Несколько лет назад ученые обнаружили места на суше с повышенным содержанием элементов платиновой группы, прослоями угля, микрочастицами расплава. По их мнению, это может быть признаком пребывания Земли в потоке обломков кометы или астероида. В новой работе впервые представлены доказательства кометного события в позднем дриасе из морских осадочных толщ.

22 июля, 14:44
ФизТех

Команда исследователей из Сколтеха, МФТИ, Института искусственного интеллекта AIRI и других научных центров разработала метод, позволяющий не просто отличать тексты, написанные человеком, от сгенерированных нейросетью, но и понимать, по каким именно признакам классификатор принимает решение о том, является ли текст генерацией или нет.  Анализируя внутренние состояния глубоких слоев языковой модели, ученые смогли выделить и интерпретировать численные признаки, отвечающие за стилистику, сложность и «степень уверенности» текста.

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно