Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Искусственный интеллект научили смотреть на проблему под разными углами
Коллектив исследователей из T-Bank, МФТИ и МИСИС разработал новый подход к обучению ансамблей нейронных сетей, заставляющий каждую модель в группе смотреть на проблему под своим уникальным углом. Этот метод, названный Saliency-Diversified Deep Ensembles (SDDE), позволяет не просто повысить точность работы искусственного интеллекта, но и научить его лучше распознавать ситуации, с которыми он ранее не сталкивался. В результате ансамбль становится умнее, точнее и осторожнее при столкновении с неизвестными данными, что открывает новые горизонты для создания более надежных и безопасных ИИ-систем.
Современные нейронные сети достигли поразительных успехов в решении множества задач, от распознавания лиц на фотографиях до медицинской диагностики и управления беспилотными автомобилями. Однако у них есть фундаментальная уязвимость, известная как «сдвиг домена». Модель, блестяще обученная на одном наборе данных, может совершать грубые ошибки, столкнувшись с данными из реального мира, которые хоть немного отличаются от обучающих примеров. Это похоже на студента, который выучил ответы на конкретные билеты, но теряется, если вопрос сформулирован чуть иначе. Для решения этой проблемы инженеры часто используют «ансамбли» — группы из нескольких нейросетей, которые анализируют задачу параллельно, а их «мнения» усредняются для получения итогового ответа. Этот подход, подобно коллективному разуму, повышает надежность и точность.
Тем не менее, у классических ансамблей есть своя «ахиллесова пята» — интеллектуальная однородность. В процессе обучения разные модели в ансамбле, стремясь к максимальной точности на одних и тех же данных, часто начинают «думать» одинаково. Они выучивают одни и те же признаки и шаблоны, обращая внимание на одни и те же детали. В итоге вместо команды независимых экспертов с разными точками зрения получается эхо-камера, где все участники лишь подтверждают выводы друг друга. Это ограничивает эффективность ансамбля и делает его уязвимым перед по-настоящему новыми и нестандартными ситуациями.
Именно эту проблему «интеллектуальной однородности» и взялись решить российские ученые. Их целью было заставить модели внутри ансамбля не просто приходить к разным ответам, но и основывать свои выводы на разных аспектах исходных данных. Для этого они обратились к концепции «карт внимания» (saliency maps). Карта внимания — это своего рода «тепловая карта» изображения, которая показывает, на какие пиксели нейросеть обращает больше всего внимания при принятии решения. Это похоже на то, как человек, разглядывая картину, выделяет для себя ключевые детали: лицо персонажа, яркий элемент одежды или необычную деталь на фоне. Работа исследователей опубликована в виде препринта на научном портале arXiv и на конференции ICIP.
Ключевая идея метода SDDE заключается во внедрении в процесс обучения специальной математической «функции потерь», которая штрафует ансамбль за сходство карт внимания у его моделей. Если две нейросети пытаются сфокусироваться на одной и той же области изображения для вынесения вердикта, алгоритм вносит коррективы в их обучение, поощряя их искать альтернативные, но не менее важные признаки. Таким образом, одна модель учится распознавать кошку по форме ушей, другая — по текстуре шерсти, третья — по характерной позе, а четвертая — по контексту окружения. В качестве инструмента для построения карт внимания исследователи использовали хорошо зарекомендовавший себя метод GradCAM.
Для проверки эффективности своего подхода команда провела серию масштабных экспериментов на общепризнанных наборах данных для компьютерного зрения, включая CIFAR-10, CIFAR-100 и ImageNet. Они сравнили работу своего ансамбля SDDE с несколькими передовыми методами, включая классические глубокие ансамбли (Deep Ensembles) и другие подходы, направленные на повышение разнообразия. Результаты оказались убедительными: по всем ключевым метрикам — точности классификации, калибровке (умению модели адекватно оценивать собственную уверенность) и качеству детекции данных из посторонних источников — предложенный метод продемонстрировал значительное превосходство.
«Представьте, что вы собираете комитет экспертов для принятия важного решения. Если вы пригласите десять специалистов с абсолютно одинаковым опытом и взглядами, вы получите очень уверенный, но, возможно, ошибочный ответ. Гораздо эффективнее собрать команду с разным опытом: один — теоретик, другой — практик, третий — специалист по смежной области. Наш метод, SDDE, выступает в роли модератора, который на этапе обучения говорит каждой нейросети-эксперту: “Ты, пожалуйста, обрати внимание на текстуру. А ты — на форму. А ты — на общий контекст”. В результате их коллективное решение становится гораздо более взвешенным и устойчивым к неожиданностям, — прокомментировал суть работы Станислав Дерека, аспирант МФТИ. Затем он добавил: —Главное преимущество нашего подхода — это повышение надежности систем искусственного интеллекта в реальном мире, который всегда полон сюрпризов. Когда модель не просто классифицирует то, что знает, но и умеет сказать “я не уверена, что это такое”, это фундаментальный шаг к созданию ответственного и заслуживающего доверия ИИ. Наш метод делает ансамбли более “скромными” и осторожными, что в критических приложениях гораздо важнее самоуверенной точности».
Разработка российских исследователей смещает фокус с диверсификации конечных предсказаний на диверсификацию самого процесса анализа данных. Если предыдущие методы в основном пытались сделать так, чтобы модели давали немного разные ответы, то ученые пошли глубже: они заставили диверсифицироваться сам «мыслительный процесс» моделей — их внимание к входным данным. Это обеспечивает более фундаментальное и робастное разнообразие внутри ансамбля.

Повышение способности ИИ распознавать неизвестное — ключевой фактор для создания по-настоящему безопасных систем. Это критически важно для беспилотных автомобилей, которые должны адекватно реагировать на нестандартные дорожные ситуации или внезапно появившиеся на дороге объекты, которых не было в обучающих данных. В медицине такие системы смогут не просто ставить диагнозы на основе известных снимков, но и сигнализировать врачу, что столкнулись с редкой или атипичной патологией, требующей особого внимания человека. Другие возможные применения включают финансовый мониторинг для выявления новых видов мошенничества, системы контроля качества на производстве и обеспечение безопасности в киберпространстве.
В будущем исследователи планируют адаптировать свой подход для других типов данных, таких как аудиосигналы, тексты и временные ряды, а также исследовать возможность динамического управления разнообразием ансамбля в зависимости от сложности решаемой задачи. Разработка открывает путь к созданию следующего поколения ИИ-систем, которые будут не только эффективными, но и более устойчивыми и надежными перед лицом непредсказуемой реальности.
Долгое время ученые полагали, что сотни гигантских статуй на острове Пасхи создали представители местной общины под руководством одного вождя. Однако авторы нового исследования поставили эту гипотезу под сомнение. Детальная трехмерная карта главного каменного карьера острова указала на более сложную картину. Вероятно, монументы были плодом творчества и соперничества небольших независимых групп.
Что стало настоящим фундаментом власти — умение обрабатывать землю или контроль над некоторыми культурными растениями? Авторы нового исследования пришли к выводу, что появление первых крупных сообществ и государств зависело не от земледелия в целом, а от выращивания определенных злаков. Эти культуры было легко хранить и, еще важнее, невероятно просто облагать налогом, что и дало толчок появлению цивилизации.
Гамма-излучение, зафиксированное гамма-телескопом «Ферми», по мнению исследователя, может объясняться только распадом вимпов, частиц темной материи, в существовании которых множество других физиков уже разуверились. Если независимые проверки подтвердят открытие, это может существенно изменить космологическую картину мира.
Так называемые зумеры и альфа, несмотря на молодой возраст, уже формируют ключевые поведенческие и потребительские тренды. Ученые Пермского Политеха рассказали, почему обозначение поколений начали с конца алфавита, как альфа и зумеры отличаются в способности к терпеливости, совмещении цифрового и реального «Я», подходу к профессиональной деятельности и отношении к финансам, какое мышление пришло на смену клиповому и как использование искусственного интеллекта повлияет на авторитет родителей.
Коллектив российских ученых из МИРЭА — Российского технологического университета, Центра фотоники двумерных материалов МФТИ, Института металлургии и материаловедения им. А. А. Байкова РАН и ряда других ведущих научных центров провел глубокое исследование кристаллической структуры широко используемых пьезоэлектрических материалов на основе цирконата-титаната свинца. Используя метод рентгеноструктурного анализа, исследователи впервые смогли в деталях установить, как небольшие химические добавки кардинально меняют фазовый состав керамики и напрямую определяют ее электрофизические характеристики. Это открывает путь к целенаправленному дизайну «умных» материалов с заранее заданными свойствами для передовой электроники и сенсорики.
Ученые разработали штамм цианобактерии, способный поглощать в три раза больше фосфора из сточных вод
Фосфор – элемент, играющий ключевую роль в росте растений. В сельском хозяйстве он используется в составе многих минеральных удобрений. В то же время фосфор, содержащийся в сточных водах — серьезный загрязнитель, который при попадании в водоемы нарушает баланс экосистем и вызывает цветение водорослей. Ученые Национального исследовательского центра «Курчатовский институт» и Южного федерального университета предложили новый экологичный способ выделения фосфора из сточных вод с помощью фотосинтезирующих микроорганизмов.
Человеческие языки разнообразны, но это разнообразие ограничивается повторяющимися закономерностями. Пытаясь описать правила, которым подчиняются различия в грамматике, лингвисты сформулировали ряд так называемых грамматических универсалий — утверждений, предположительно верных для всех или большинства языков мира. Международная команда ученых провела статистический анализ на материале 2430 языков и обнаружила, что соответствующими действительности можно считать около трети таких утверждений.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
