Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
GPT-3 выполнил тест на мышление аналогиями лучше студентов колледжа
Американские психологи проверили способность большой языковой модели GPT-3 решать незнакомые для нее задачи методом аналогии. Это классический подход к определению интеллектуального развития людей, и нейросетевой алгоритм показал себя с неожиданной стороны. Он дал больше правильных ответов в адаптированном тесте стандартными прогрессивными матрицами Рейвена, чем студенты старших курсов колледжа.
Заставлять нейросети делать что-нибудь, для чего они изначально не предназначались — интересное развлечение, с которым после открытия доступа к языковым моделям вроде ChatGPT познакомился едва ли не каждый пользователь интернета. Однако подобные действия могут иметь и вполне научное обоснование. Тестируя генеративный искусственный интеллект на грани его возможностей, ученые ищут способы познания человеческого разума.
Пожалуй, самое впечатляющее в алгоритмах семейства GPT-3 — их способность решать те или иные новые задачи с минимум примеров (Zero-shot). Главное — описать проблему текстом.
Такая механика мышления — изучить один-два образца, провести аналогию с новой, совсем незнакомой, но похожей ситуацией и найти из нее выход — называется аналоговым, или аналогичным, рассуждением (analogical reasoning). Имеется в виду «рассуждение» как часть мышления, а не вербализация. И считается, что это уникальная особенность людей. Может быть, еще и некоторых наиболее интеллектуально развитых видов животных.
Исследователи из Калифорнийского университета в Лос-Анджелесе (UCLA) задались вопросом, действительно ли GPT-3 может рассуждать по аналогии. Для этого они выбрали задачи, с которыми модель точно не встречалась во время обучения.
Ученые адаптировали для работающего с текстом искусственного интеллекта проверенные временем карточки теста стандартными прогрессивными матрицами Рейвена.
Это серии изображений из девяти элементов, сгруппированных по три, с пропущенной девятой ячейкой. Испытуемому предлагается выбрать из нескольких вариантов ответа правильный. Фигуры имеют несколько свойств, которые в каждом ряду изменяются по набору правил. Чтобы ответить верно, нужно, глядя на первые два ряда, определить правила и, проведя аналогию, применить их к третьему ряду. На словах непросто, но визуально воспринимается легко (смотрите иллюстрацию). С каждым следующим заданием сложность возрастает.
Поскольку GPT-3 не мультимодальная модель, то есть умеет работать только с текстом, матрицы адаптировали, но принцип остался тот же. В качестве контрольной группы выступали учащиеся колледжа UCLA. И они проиграли искусственному интеллекту.
Студенты дали чуть менее 60 процентов правильных ответов (нормальный уровень), GPT-3 — 80 процентов (больше среднего для людей, но в рамках нормы). Как отметили авторы исследования, алгоритм совершал те же ошибки, что и человек. Иными словами, высока вероятность, что процесс принятия решений был очень похожим.
В дополнение к матрицам Рейвена исследователи дали алгоритму задачи из стандартизированного теста для приема в высшие учебные заведения США (SAT). Большая часть его вариантов никогда не публиковалась в открытом доступе, так что GPT-3, скорее всего, с ними тоже не знаком.
Модель показала высокие результаты (наравне или лучше контрольной группы людей) в заданиях вида «„любовь“ для „ненависти“ — то же, что „богатство“ для этого слова, какого?» (правильный ответ — «бедности»). Таким образом, алгоритм должен был понять, что от него требуется найти в этом случае антоним, без прямого указания на то.
Ожидаемо GPT-3 хорошо решил и более трудные вопросы, в которых аналогии нужно было провести между целыми предложениями или абзацами. А вот где модель предсказуемо села в лужу, так это в задачах на пространственное мышление.
Даже если подробно описать проблему вроде «чем лучше переложить жевательные конфеты из одной миски в другую — трубкой, ножницами или лентой», алгоритм предлагал бессмысленные тексты в ответ.
Проведенное американскими психологами исследование на новом уровне поднимает вопрос: имитируют ли большие языковые модели ряд аспектов человеческого мышления, либо перед нами совершенно новый тип мышления? Во втором случае сама собой напрашивается аналогия со знаменитым философским концептом «призрака в машине». По одной из его интерпретаций, достаточно сложноустроенная искусственная система (машина) может обретать новые непредвиденные свойства, которые со стороны будут неотличимы от человеческого сознания.
У научной работы есть два существенных ограничения, на которые ее авторы справедливо указывают. В первую очередь, несмотря на старания исследователей, нет никаких гарантий, что GPT-3 во время обучения сталкивался с задачами, похожими на вышеописанные. Наименее вероятно, что модель тренировали на текстовых представлениях прогрессивных матриц Рейвена. Наиболее — что какие-то варианты SAT могли встречаться в наборе данных для обучения.
Из этого вытекает вторая проблема: ученые не обладают доступом к «внутренностям» модели, из-за чего процессы ее «мышления» представляют собой черный ящик. А это сдерживает нейронауки в развитии.
Научная статья с подробным описанием исследования опубликована в журнале Nature Human Behaviour. Ее препринт (неотрецензированная версия) размещен в открытом доступе на портале arXiv.
Два ключевых события сыграли решающую роль в формировании генетического профиля современных европейских народов. Первое связано с приходом ранних фермеров из Анатолии примерно восемь тысяч лет назад, второе — масштабная миграция на запад носителей ямной степной культуры, начавшаяся пять тысяч лет назад. Однако ученые видят множество отличий от общей картины в разных регионах. В новой работе они проанализировали ДНК древних жителей самого северо-запада Европы и обнаружили более тесную связь с охотниками-собирателями, чем где бы то ни было.
В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.
Группа биологов и медиков из Австралии, Сингапура и Китая обнаружила, что белок MCL-1 играет критическую роль в выживании стволовых клеток волосяных фолликулов. Без него клетки погибают, что приводит к остановке регенерации и роста волос.
Ученые из Сколтеха исследовали разнообразие молекул, которые могут образовываться из атомов кислорода и углерода. Помимо широко известных углекислого и угарного газов, моделирование обнаружило две сотни экзотических, но относительно стабильных соединений этих двух элементов, многие из которых не были описаны ранее. Этот класс веществ представляет интерес для исследований космоса, аккумуляторных технологий, биохимии и — неожиданным образом — для разработки промышленной взрывчатки и ракетного топлива. Как оказалось, некоторые из открытых веществ при распаде будут высвобождать более 75 процентов взрывной энергии тротила.
Два ключевых события сыграли решающую роль в формировании генетического профиля современных европейских народов. Первое связано с приходом ранних фермеров из Анатолии примерно восемь тысяч лет назад, второе — масштабная миграция на запад носителей ямной степной культуры, начавшаяся пять тысяч лет назад. Однако ученые видят множество отличий от общей картины в разных регионах. В новой работе они проанализировали ДНК древних жителей самого северо-запада Европы и обнаружили более тесную связь с охотниками-собирателями, чем где бы то ни было.
В архивах английского поместья столетиями пылилась ничем не примечательная книга учета XVI века. Никто не подозревал, что внутри ее переплета скрываются фрагменты пергамента с историями, которые переписывали монахи семь веков назад. Тайна раскрылась, когда архивариус заметил странные символы на обложке. Так началось расследование, объединившее разных ученых. Исследователи три года пытались прочитать текст, не прикасаясь к нему. Теперь они представили результат своего труда — мир получил два ранее неизвестных эпизода о волшебнике Мерлине, короле Артуре и рыцаре Гавейне.
Когда пара расстается, многие люди продолжают испытывать чувства к своим бывшим. Если разрыв произошел по инициативе другой стороны и отношения длились много лет, полностью «забыть» еще недавно близкого человека может быть непросто. Существует мнение, что и после расставания привязанность к экс-партнерам в какой-то мере сохраняется. Впрочем, согласно другой точке зрения, со временем эта эмоциональная связь ослабевает и утрачивается. Разобраться, как происходит на самом деле и сколько времени может потребоваться на полный эмоциональный разрыв с бывшими возлюбленными, взялись психологи из Иллинойсского университета в Урбане-Шампейне (США).
В двойственных, или обратимых, изображениях зритель может увидеть разные объекты в зависимости от того, на каких деталях концентрируется его внимание. Среди известных примеров таких рисунков — иллюзия «кролик-утка», сочетающая двух животных, и обратимая ваза (или ваза Рубина), которая может казаться двумя силуэтами лиц, если сосредоточиться на фоне. В соцсетях и популярных СМИ часто публикуют подобные картинки, утверждая, что по тому, какое изображение человек видит в первую очередь, можно судить о его личностных чертах и особенностях мышления. Двое психологов из Великобритании недавно проверили, так ли это на самом деле.
Масштабный анализ геномов показал, что вид Homo sapiens возник в результате смешения двух древних популяций. Они разделились полтора миллиона лет назад, а затем воссоединились до расселения по миру.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии