Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В Сколтехе выявили ограничения квантового процессора Google с помощью суперкомпьютера
Специалисты Лаборатории квантовой обработки информации Центра фотоники и квантовых материалов совместно с группой суперкомпьютерных вычислений Центра по научным и инженерным вычислительным технологиям (CDISE), разработавшей суперкомпьютер «Жорес», создали эмуляцию вычислений на квантовом процессоре Google.
Суперкомпьютер воспроизводил данные без характерных ошибок, связанных с реализацией физических экспериментов, но со статистическим распределением, аналогичным тем, которые были продемонстрированы в ходе недавних экспериментов Google. В своем численном эксперименте группа сумела указать на определенный скрывающийся в результатах Google эффект, получивший название «дефицит достижимости» и описанный ранее командой ученых из Сколтеха.
Полученные числовые значения подтверждают, что данные Google находятся на грани так называемой лавины, при попадании в которую решения задачи с заданными ресурсами достичь невозможно. Специалисты Сколтеха выявили единственный необходимый и достаточный критерий, позволяющий предсказать попадание в лавину, называемый «плотностью» переменных. При плотности, характерной для практических задач, решение потребует значительно больше квантовых ресурсов для выполнения квантовой приближенной оптимизации. Результаты опубликованы в ведущем отраслевом журнале Quantum.
С самого начала эпохи численных вычислений наибольшую сложность для эмуляции представляли квантовые системы, хотя конкретные причины этого феномена остаются предметом исследований. Однако эта сложность, связанная с эмуляцией квантовой системы на классическом компьютере, сподвигла некоторых ученых изменить свои подходы.
В начале 1980-х годов такие ученые, как Ричард Фейнман и Юрий Манин, выдвинули предположение, что те неизвестные компоненты, отсутствие которых затрудняет эмуляцию квантовой системы на классическом компьютере, могут в свою очередь быть использованы как вычислительный ресурс. Например, квантовый процессор будет отлично подходить для моделирования квантовых систем, поскольку его работа основывается на тех же принципах.
Эти ранние идеи подтолкнули Google и других технологических гигантов к созданию первых прототипов долгожданных квантовых процессоров. Существующие сегодня версии этих устройств подвержены ошибкам и могут выполнять только простейшие квантовые программы, при этом каждое вычисление должно повторяться несколько раз, чтобы путем усреднения исключались ошибки и формировались приближенные величины.
Одна из наиболее исследуемых областей применения современных квантовых процессоров — квантовый приближенный алгоритм оптимизации (QAOA). В ходе ряда впечатляющих экспериментов специалисты Google использовали свой квантовый процессор для оценки возможностей квантовых вычислений. Для этого была написана программа QAOA, использующая 23 кубита квантового процессора Google Sycamore и три временных шага по настройке параметров оптимизации.
По сути, QAOA представляет собой подход к решению задачи оптимизации функции многих переменных посредством аппроксимации на гибридной системе, состоящей из классического компьютера и квантового сопроцессора. В настоящее время прототипы квантовых процессоров, такие как Google Sycamore, обладают весьма ограниченным потенциалом, так как каждая операция вносит неточность из-за физических шумов в устройстве. Ожидается, что гибридные системы позволят преодолеть некоторые из этих систематических ограничений и в полной мере воспользоваться преимуществами квантовых компьютеров, что повышает привлекательность таких подходов, как QAOA.
Недавно ученые из Сколтеха сделали ряд открытий в отношении QAOA. Вы можете ознакомиться с подробной информацией о них здесь. Среди них особенно выделяется эффект, который принципиально ограничивает применимость QAOA. Согласно результатам, плотность переменных в задаче оптимизации, то есть соотношение соответствующих ограничений и переменных, является основным фактором, препятствующим получению приближенных решений.
Чтобы преодолеть эти ограничения производительности, требуются дополнительные ресурсы, то есть дополнительные операции, выполняемые на квантовом сопроцессоре. Эти открытия были сделаны в теории с использованием численных экспериментов ограниченного объема. Ученые хотели проверить, возникал ли выявленный ранее эффект в недавнем исследовании Google.
Специалисты лаборатории квантовых алгоритмов Сколтеха обратились к группе суперкомпьютерных вычислений в центре CDISE, которую возглавляет Олег Панарин, с просьбой предоставить вычислительные мощности для эмуляции квантового чипа Google. Старший научный сотрудник Лаборатории квантовой обработки информации Игорь Захаров совместно с коллегами приступил к модернизации существующего программного обеспечения, что позволило бы выполнять на суперкомпьютере «Жорес» параллельные вычисления.
Спустя несколько месяцев группа смогла создать эмуляцию, которая выводила данные с тем же статистическим распределением, что и у Google, и продемонстрировать диапазон реализации численных экспериментов с различной плотностью переменных, при которых производительность QAOA резко снижается. Они также обнаружили, что данные Google располагаются на границе этого диапазона, в его пределах текущий уровень развития квантовых компьютеров не позволяет получить какие-либо преимущества.
Сначала команда из Сколтеха определила, что дефициты достижимости (ограничения производительности, вызванные определенным значением плотности, то есть соотношением ограничений и переменных в задаче), наблюдались в отношении так называемой задачи максимального удовлетворения ограничений. В Google решали иную, но смежную задачу по функции минимизации энергии графа. Поскольку эти задачи относились к одному классу сложности, группа сделала предположение, что сами задачи, а следовательно, и эффекты могут быть взаимосвязаны.
Это предположение оказалось верным. Были собраны данные, и результаты отчетливо продемонстрировали, что дефициты достижимости создают лавинный эффект и данные Google находятся на той тонкой грани, после которой потребуются более мощные и длинные цепи QAOA, которые не могут быть реализованы на квантовом процессоре Google Sycamore.
Олег Панарин, менеджер по информационным сервисам и обработке данных в Сколтехе, заявил: «Мы рады видеть, что наш компьютер позволил получить такие грандиозные результаты. Проект был сложным и занял много времени. И мы тесно сотрудничали с Лабораторией квантовой обработки информации по его реализации. Мы считаем, что этот проект станет основой для будущих исследований в этой области с использованием суперкомпьютера „Жорес“».
Игорь Захаров, старший научный сотрудник Сколтеха, добавил: «Мы взяли код ведущего автора данного исследования Акшайа Вишванатана и создали на его основе программу, выполняющуюся параллельно. Разумеется, мы были в восторге, когда наконец увидели данные с той же статистикой, что была у Google. В рамках этого проекта мы создали программный пакет, способный эмулировать различные современные квантовые процессоры до 36 кубитов и дюжины слоев».
Акшай Вишванатан, аспирант Сколтеха, рассказывает: «В свое время преодолеть предел в несколько кубитов и слоев в QAOA было очень сложно. Разработанная нами программа эмуляции могла обрабатывать только упрощенные модели, и сначала я думал, что, хотя этот проект и являет собой увлекательную задачу, он может оказаться невыполнимым. К счастью, меня окружали оптимистичные и увлеченные своим делом коллеги, что мотивировало меня довести дело до конца и воспроизвести данные Google на суперкомпьютере в Сколтехе. Конечно, было очень волнительно, когда наши данные совпали с данными Google и мы получили то же статистическое распределение, что позволило обнаружить этот эффект».
Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.
Американские ученые проанализировали данные о поедании фекалий животными, чтобы выяснить, какие причины стоят за этим поведением и какие закономерности можно проследить. В результате они разделили всю выборку более чем из 150 видов на семь категорий по тому, что заставляет зверей питаться таким сомнительным продуктом.
Работать под началом шефа-абьюзера тяжело, но свежее исследование показало, что бывают варианты похуже. Ученые выяснили, что еще негативнее на моральный дух и производительность труда сотрудников влияет, когда во главе команды стоит самодур, у которого вспышки агрессии непредсказуемо сменяются этичным поведением.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Принято считать, что естественный спутник Земли возник в результате ее столкновения с другой планетой, но к этой версии есть вопросы. Теперь ученые предложили рассмотреть сценарий возможного захвата Луны притяжением Земли из пролетавшей мимо двойной системы.
Ученые из Аргентины в серии экспериментов проследили за поведением домашних собак во время разногласий между членами семьи и выявили у четвероногих питомцев ряд характерных реакций на конфликт.
Под рыжим верхним слоем с виду обычного камня открылся целый калейдоскоп довольно неожиданных оттенков. Это особенно интересно с учетом того, где лежит камень — в марсианском кратере, который по всем признакам когда-то был озером.
Международная коллаборация физиков под руководством ученых из Йельского университета в США представила самые убедительные на сегодня подтверждения существования нового типа сверхпроводящих материалов. Доказательство существования нематической фазы вещества — научный прорыв, открывающий путь к созданию сверхпроводимости совершенно новым способом.
Органические молекулы с пи-связью образуют очень устойчивые геометрии, которые не любят нарушаться. В 1924 году немецкий химик Юлиус Бредт сформулировал соответствующий запрет, вошедший в учебники химии. Тем не менее это в некоторых случаях возможно. В новой работе американские исследователи представили несколько «антибредтовских» соединений из класса олефинов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
ПонятноМы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.
Понятно
Комментарии