Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В Сколтехе выявили ограничения квантового процессора Google с помощью суперкомпьютера
Специалисты Лаборатории квантовой обработки информации Центра фотоники и квантовых материалов совместно с группой суперкомпьютерных вычислений Центра по научным и инженерным вычислительным технологиям (CDISE), разработавшей суперкомпьютер «Жорес», создали эмуляцию вычислений на квантовом процессоре Google.
Суперкомпьютер воспроизводил данные без характерных ошибок, связанных с реализацией физических экспериментов, но со статистическим распределением, аналогичным тем, которые были продемонстрированы в ходе недавних экспериментов Google. В своем численном эксперименте группа сумела указать на определенный скрывающийся в результатах Google эффект, получивший название «дефицит достижимости» и описанный ранее командой ученых из Сколтеха.
Полученные числовые значения подтверждают, что данные Google находятся на грани так называемой лавины, при попадании в которую решения задачи с заданными ресурсами достичь невозможно. Специалисты Сколтеха выявили единственный необходимый и достаточный критерий, позволяющий предсказать попадание в лавину, называемый «плотностью» переменных. При плотности, характерной для практических задач, решение потребует значительно больше квантовых ресурсов для выполнения квантовой приближенной оптимизации. Результаты опубликованы в ведущем отраслевом журнале Quantum.
С самого начала эпохи численных вычислений наибольшую сложность для эмуляции представляли квантовые системы, хотя конкретные причины этого феномена остаются предметом исследований. Однако эта сложность, связанная с эмуляцией квантовой системы на классическом компьютере, сподвигла некоторых ученых изменить свои подходы.
В начале 1980-х годов такие ученые, как Ричард Фейнман и Юрий Манин, выдвинули предположение, что те неизвестные компоненты, отсутствие которых затрудняет эмуляцию квантовой системы на классическом компьютере, могут в свою очередь быть использованы как вычислительный ресурс. Например, квантовый процессор будет отлично подходить для моделирования квантовых систем, поскольку его работа основывается на тех же принципах.
Эти ранние идеи подтолкнули Google и других технологических гигантов к созданию первых прототипов долгожданных квантовых процессоров. Существующие сегодня версии этих устройств подвержены ошибкам и могут выполнять только простейшие квантовые программы, при этом каждое вычисление должно повторяться несколько раз, чтобы путем усреднения исключались ошибки и формировались приближенные величины.
Одна из наиболее исследуемых областей применения современных квантовых процессоров — квантовый приближенный алгоритм оптимизации (QAOA). В ходе ряда впечатляющих экспериментов специалисты Google использовали свой квантовый процессор для оценки возможностей квантовых вычислений. Для этого была написана программа QAOA, использующая 23 кубита квантового процессора Google Sycamore и три временных шага по настройке параметров оптимизации.
По сути, QAOA представляет собой подход к решению задачи оптимизации функции многих переменных посредством аппроксимации на гибридной системе, состоящей из классического компьютера и квантового сопроцессора. В настоящее время прототипы квантовых процессоров, такие как Google Sycamore, обладают весьма ограниченным потенциалом, так как каждая операция вносит неточность из-за физических шумов в устройстве. Ожидается, что гибридные системы позволят преодолеть некоторые из этих систематических ограничений и в полной мере воспользоваться преимуществами квантовых компьютеров, что повышает привлекательность таких подходов, как QAOA.
Недавно ученые из Сколтеха сделали ряд открытий в отношении QAOA. Вы можете ознакомиться с подробной информацией о них здесь. Среди них особенно выделяется эффект, который принципиально ограничивает применимость QAOA. Согласно результатам, плотность переменных в задаче оптимизации, то есть соотношение соответствующих ограничений и переменных, является основным фактором, препятствующим получению приближенных решений.
Чтобы преодолеть эти ограничения производительности, требуются дополнительные ресурсы, то есть дополнительные операции, выполняемые на квантовом сопроцессоре. Эти открытия были сделаны в теории с использованием численных экспериментов ограниченного объема. Ученые хотели проверить, возникал ли выявленный ранее эффект в недавнем исследовании Google.
Специалисты лаборатории квантовых алгоритмов Сколтеха обратились к группе суперкомпьютерных вычислений в центре CDISE, которую возглавляет Олег Панарин, с просьбой предоставить вычислительные мощности для эмуляции квантового чипа Google. Старший научный сотрудник Лаборатории квантовой обработки информации Игорь Захаров совместно с коллегами приступил к модернизации существующего программного обеспечения, что позволило бы выполнять на суперкомпьютере «Жорес» параллельные вычисления.
Спустя несколько месяцев группа смогла создать эмуляцию, которая выводила данные с тем же статистическим распределением, что и у Google, и продемонстрировать диапазон реализации численных экспериментов с различной плотностью переменных, при которых производительность QAOA резко снижается. Они также обнаружили, что данные Google располагаются на границе этого диапазона, в его пределах текущий уровень развития квантовых компьютеров не позволяет получить какие-либо преимущества.
Сначала команда из Сколтеха определила, что дефициты достижимости (ограничения производительности, вызванные определенным значением плотности, то есть соотношением ограничений и переменных в задаче), наблюдались в отношении так называемой задачи максимального удовлетворения ограничений. В Google решали иную, но смежную задачу по функции минимизации энергии графа. Поскольку эти задачи относились к одному классу сложности, группа сделала предположение, что сами задачи, а следовательно, и эффекты могут быть взаимосвязаны.
Это предположение оказалось верным. Были собраны данные, и результаты отчетливо продемонстрировали, что дефициты достижимости создают лавинный эффект и данные Google находятся на той тонкой грани, после которой потребуются более мощные и длинные цепи QAOA, которые не могут быть реализованы на квантовом процессоре Google Sycamore.
Олег Панарин, менеджер по информационным сервисам и обработке данных в Сколтехе, заявил: «Мы рады видеть, что наш компьютер позволил получить такие грандиозные результаты. Проект был сложным и занял много времени. И мы тесно сотрудничали с Лабораторией квантовой обработки информации по его реализации. Мы считаем, что этот проект станет основой для будущих исследований в этой области с использованием суперкомпьютера „Жорес“».
Игорь Захаров, старший научный сотрудник Сколтеха, добавил: «Мы взяли код ведущего автора данного исследования Акшайа Вишванатана и создали на его основе программу, выполняющуюся параллельно. Разумеется, мы были в восторге, когда наконец увидели данные с той же статистикой, что была у Google. В рамках этого проекта мы создали программный пакет, способный эмулировать различные современные квантовые процессоры до 36 кубитов и дюжины слоев».
Акшай Вишванатан, аспирант Сколтеха, рассказывает: «В свое время преодолеть предел в несколько кубитов и слоев в QAOA было очень сложно. Разработанная нами программа эмуляции могла обрабатывать только упрощенные модели, и сначала я думал, что, хотя этот проект и являет собой увлекательную задачу, он может оказаться невыполнимым. К счастью, меня окружали оптимистичные и увлеченные своим делом коллеги, что мотивировало меня довести дело до конца и воспроизвести данные Google на суперкомпьютере в Сколтехе. Конечно, было очень волнительно, когда наши данные совпали с данными Google и мы получили то же статистическое распределение, что позволило обнаружить этот эффект».
Некоторые исключительно хорошо узнают ранее увиденные незнакомые лица. Такие свидетели не раз помогали раскрывать преступления. Психологи из Австралии, изучающие этот тип людей, которых они назвали «суперузнавателями», в новом исследовании привлекли искусственный интеллект, чтобы разобраться, в чем секрет суперспособности.
Морские биологи стали свидетелями любопытной тактики охоты. Стаи косаток целенаправленно атакуют молодых белых акул: переворачивают их брюхом вверх, вызывая временный паралич, а затем выедают печень. Ученые впервые засняли на видео этот тип охоты и считают, что речь идет о новой, ранее неизвестной группе косаток, которые специализируются именно на таких нападениях.
Исследователи из Австралии выяснили у профессиональных кинологов, какие несложные обонятельные игры и приемы могут помочь хозяевам разнообразить жизнь четвероногих любимцев, дать им дополнительную умственную нагрузку и повысить благополучие.
Третий в истории наблюдений объект из другой звездной системы 3I/ATLAS произвел впечатление своей активностью и необычным химическим составом. Астрофизики пришли к выводу, что это последствия миллиардов лет воздействия на комету космических лучей.
Международная группа ученых провела необычный эксперимент. Исследователи взяли образцы фекалий у детей с разными типами темперамента и пересадили их крысам. После этого животные начали вести себя по-разному: те, кто получил микробиоту от активных детей, стали смелее и больше исследовали новое пространство. Это открытие намекает на то, что бактерии, живущие в кишечнике с детства, в какой-то мере способны влиять на формирование личности.
Обитающий в полярных районах Северного полушария гренландский кит (Balaena mysticetus) живет более двух столетий и почти не болеет раком. Секрет его долголетия оказался скрыт в клетках соединительной ткани, ответственной за заживление ран: при пониженной температуре в них активируется особый белок, усиливающий восстановление поврежденной ДНК.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
Согласно новой гипотезе, сознание возникает не только из-за активности нейронов, но и благодаря физическим процессам — электромагнитным полям от движения жидкости в мозге. Эта модель, как и ее предшественники, пока носит теоретический характер, но предлагает нестандартный взгляд на проблему синхронизации работы разных отделов мозга.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
