Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В МТУСИ разработали нейросеть, способную распознавать автомобили
Сотрудники факультета «Информационные технологии» МТУСИ под руководством декана факультета Михаила Городничева разработали уникальную нейронную сеть, созданную специально для решения задачи распознавания марок транспортных средств.
Человеческая жизнь в современную эпоху представляет собой обширный список практических задач, которые можно автоматизировать для повышения общей эффективности. В прошлом этот список ограничивался только задачами, решение которых не требовало творческого мышления и было свойственно только одному человеку. На современном этапе достижения научно-технического прогресса за последние два десятилетия значительно расширили этот список.
Специально для подобных задач сотрудники МТУСИ создали сверточные нейронные сети или CNN. Их задача — принимать изображения в качестве входной информации и, основываясь на результатах своей работы, выдавать названия классов объектов, которые были ранее определены в процессе обучения с помощью применения робастной функции потерь.
В процессе разработки нейронной сети данные собирались с сервиса Auto.ru и камер наружного видеонаблюдения, а сам DataSet был собран размером более 90 тысяч экземпляров, которые в дальнейшем размещались и предобрабатывались, благодаря чему разработанная технология способна определять автомобили и их марки по отдельным элементам для повышения точности.
Искусственный интеллект сегодня является одним из наиболее перспективных направлений в ИТ-области. Одним из преимуществ своей разработки ученые называют точность. В перспективе нейросеть с легкостью способна облегчить обработку входящего видеопотока для более глубокого сбора информации о составе транспортного потока, что позволит более оптимально и безопасно управлять им. Работа опубликована в журнале World Scientific.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии