Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Сделан шаг к решению одной из главных проблем водородной энергетики
Ученые ДВФУ совместно с коллегами из Австрии, Великобритании, Турции, Словакии и России (НИТУ «МИСиС» и МГУ) придумали как насыщать тонкие слои металлических стекол водородом при комнатной температуре. Это серьезно расширяет диапазон недорогих, энергоэффективных и высокопроизводительных материалов и методов, пригодных для развития водородной энергетики.
Статья опубликована Journal of Power Sources. Ученые разработали аморфную наноструктуру (металлическое стекло на основе FeNi), которую можно применять в водородной энергетике в качестве накопителя и хранилища водорода, в том числе в миниатюрных системах с водородным питанием, где подобный накопитель сможет заменить литий-ионную батарею.
Функционально металлическим стеклом можно заменить дорогостоящий палладий, применяемый в водородных системах сегодня. Таким образом, разработчики подошли к решению проблемы производства экономически целесообразных накопителей, отсутствие которых — главная преграда для развития водородной энергетики в промышленных масштабах.
«Водород — самый распространенный химический элемент во Вселенной, чистый возобновляемый источник энергии, которым можно заменить используемые сегодня виды топлива. Однако хранение водорода — одна из главных технологических проблем. Один из ключевых материалов, используемых для хранения и катализа водорода, это палладий.
Его высокая стоимость и умеренное сродство к окислительным или восстановительным средам при экстремальных условиях создают большие барьеры для промышленного применения, — объясняет Юрий Иванов, доцент кафедры компьютерных систем школы естественных наук ДВФУ, один из участников исследования.
— Проблему можно решить с помощью металлических стекол, непрозрачных сплавов аморфных металлов, которые не обладают кристаллической структурой.
Эти сплавы имеют более высокую по сравнению с кристаллическим палладием стойкость к агрессивным средам, а их стоимость заметно ниже. Кроме того, в металлических стеклах есть так называемый свободный атомный объем, пространство между атомами, что позволяет в гораздо большей степени «пропитывать» их водородом по сравнению с материалами, которые имеют кристаллическую структуру».
По словам ученого, металлическое стекло имеет огромный потенциал в энергетическом секторе благодаря аморфной структуре и отсутствию типичных дефектов, характерных для поликристаллических металлов (таких, например, как межзеренные границы), а также высокой стойкости к окислению и коррозии.
Уникальность исследования заключается в том, что методы электрохимии применили для обогащения водородом (гидрирования) металлических стекол и одновременно для определения их способности поглощать водород.
Стандартные методы обогащения материалов водородом (газовая адсорбция) требуют высоких температур и давлений. Это, во-первых, ухудшает характеристики металлических стекол, а во-вторых, в принципе, ограничивает диапазон материалов, доступных для исследования. В отличие от газовой адсорбции электрохимическое гидрирование приводит к взаимодействию водорода с поверхностью электрода из металлического стекла на основе FeNi при комнатной температуре, как в случае с палладием.
Предлагаемый электрохимический метод может быть использован в качестве альтернативы общепринятому методу реакции газ-твердое тело для сплавов с низкой емкостью или с низкими скоростями «пропитки»/«высвобождения» водорода. Ученые также предложили новую концепцию, которую назвали «эффективным объемом», с ее помощью будут определять, насколько эффективно металлические стекла впитывают и отдают водород.
Для этого будут измерять толщину и состав области взаимодействия металлического стекла с водородом с помощью высокоразрешающей электронной микроскопии и рентгеновской фотоэлектронной спектроскопии. Цель будущих исследований научной группы — разработать и оптимизировать новые композиции металлических стекол для конкретных энергетических приложений. Ранее ученые-материаловеды из ДВФУ, Кембриджа (Великобритания) и Китайской академии наук разработали методику «омоложения» объемных металлических стекол, наиболее интересных для практического применения.
Их сделали более пластичными и устойчивыми к сверхкритическим нагрузкам. Доработанные металлические стекла можно применять во множестве областей: от гибкой электроники, разнообразных датчиков и сердечников трансформаторов до медицинских имплантов и защиты спутников.
Наблюдая за сверхновой 2024 ggi спустя всего 26 часов после вспышки, астрономы напрямую определили форму ударной волны в момент ее прорыва из звезды. Открытие позволит уточнить механизмы гибели массивных светил и может привести к пересмотру существующих моделей возникновения сверхновых.
На уникальных древнеримских стеклянных сосудах обнаружили тайные знаки, которые оказались клеймами ремесленных мастерских. Эти символы, ранее считавшиеся простым украшением, раскрыли, как работали античные мастера, и помогли доказать существование аналогов современных брендов почти две тысячи лет назад.
Ученые из МФТИ и Национального исследовательского центра «Курчатовский институт» создали первую в своем роде полную классификацию конических сингулярностей в геометрии Минковского. Это фундаментальное достижение в математической физике заполняет пробел, существовавший в общей теории относительности более 60 лет.
Ученые открыли новый, ранее неизвестный способ передвижения бактерий по поверхностям, для которого не нужны жгутики. Эти микроорганизмы на краю колонии переваривают сахара, выделяют метаболиты и создают осмотическое давление. Оно вызывает микроскопическое «цунами», и на нем бактерии катятся вперед.
Недавно интернет взорвался заголовками: «Симуляция Вселенной невозможна», «Новое исследование полностью опровергает теорию симуляции». Поводом стала статья, авторы которой вознамерились доказать, что мы не живем внутри компьютера. Naked Science объясняет, что не так с этой новостью и можно ли на самом деле доказать, что «матрицы не существует».
Термояд начнет вырабатывать электричество через 20 лет — так говорили с 1950-х, но этого все так и не происходит. Почему? В чем принципиальные сложности на этом пути? Чего добивается «Росатом» в проекте ИТЭР и почему параллельно уже начал работу по российскому термоядерному реактору ТРТ? Руководитель проектного офиса по управляемому термоядерному синтезу «Наука и инновации» госкорпорации «Росатом» Андрей Аникеев ответил на наши вопросы.
Проанализировав данные наблюдений, полученных с помощью наземных обсерваторий за последние два десятилетия, астрономы обнаружили потенциально обитаемый мир — суперземлю Gliese 251 c (GJ 251 с). Планета обращается вокруг красного карлика на расстоянии около 18 световых лет от Земли и считается одним из самых перспективных кандидатов для поисков жизни.
По расчетам, большинство «гостей» из других звездных систем летят к Земле примерно со стороны созвездия Геркулес. Скорее всего, они время от времени падают на нашу планету, просто мы еще не научились это замечать. Как удалось вычислить, чаще всего они должны падать зимой и где-то в окрестностях экватора.
В современном доме, насыщенном разнообразной техникой, удлинители стали незаменимым атрибутом, позволяющим обеспечить электропитанием все необходимые устройства. Однако мало кто задумывается, что привычное использование этого аксессуара может нести серьезную угрозу безопасности. По статистике, значительная часть бытовых пожаров происходит из-за неправильной эксплуатации электропроводки и вспомогательных устройств. Какие приборы категорически нельзя подключать через удлинители и почему это может привести к трагическим последствиям, рассказывает профессор кафедры наноэлектроники РТУ МИРЭА, доктор физико-математических наук Алексей Юрасов.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
