Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В МТУСИ разработали алгоритм для роботов-манипуляторов, который позволяет точно захватывать предметы
В современной робототехнике существует проблема сортировки объектов, хаотично расположенных в рабочей зоне манипулятора. Один предмет может полностью или частично закрывать другой, и тогда роботу будет сложно захватить нужный из них, не затронув другие или не повредив захватное устройство. В МТУСИ предложили алгоритм, основанный на нейронной сети и RGB-D сенсоре, позволяющий определить объект захвата с применением промышленного манипулятора.
Для решения проблемы захвата объектов применяются интеллектуальные алгоритмы, основанные на компьютерном зрении, которые могли бы определять положение и ориентацию таких предметов. Первый этап при решении этой проблемы — поиск нужных объектов в видеопотоке.
Никита Белов, старший преподаватель кафедры ИСУиА МТУСИ, предложил алгоритм, основанный на нейронной сети и RGB-D сенсоре, позволяющий определить предмет захвата в технологическом процессе сортировки объектов с применением промышленного манипулятора.
«В ходе эксперимента использовался робот-манипулятор KUKA KR4 R600. Для достижения высокой точности определения объектов применялись нейросетевой алгоритм YOLOv8 и камера Intel RealSense D415i, которая использовалась для определения расстояния до объекта по вертикальной оси. Далее производится выделения контуров распознанных объектов на черно-белых изображениях с помощью метода FindContours. Одним из важнейших этапов работы алгоритма стал расчет индекса Жаккара, который позволил выявить перекрывающиеся ограничивающие рамки распознанных объектов. В результате получился массив данных, который включал все пересекающиеся объекты и отклонения их отношений периметра к площади от эталонных значений», — пояснил Никита Белов.
Выяснилось, что при определении объекта только по расстоянию по оси Z, которое вычисляется с помощью RGB-D сенсора Intel RealSense D415i, есть вероятность неправильного выбора из-за перекрытия объектов. Для решения этой проблемы учитывалось взаимное перекрытие предметов. В случае нахождения пересечения выбирается объект, соотношение периметра к площади которого имеет наименьшее отклонение от эталонного значения.
Созданный алгоритм показал отличные результаты в точности и выборе наилучшего объекта захвата при сортировке в условиях хаотичного расположения объектов в накопителе и частичного или полного их перекрытия для захвата роботом-манипулятором без повреждения фланца манипулятора или захватного устройства.
Полученные результаты демонстрируют, что интеграция нейронных технологий в робототехнику открывает новые перспективы для автоматизации процессов, обеспечивая более высокую эффективность и качество работы производственных систем.
Дальнейшие исследования в этом направлении позволят открыть новые возможности для робототехники и автоматизации, делая эти технологии еще более совершенными и надежными.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Международная группа физиков из России (включая ученых ТГУ), Казахстана и Японии экспериментально зафиксировала необычное явление: стрела, движущаяся прямолинейно, оставляет за собой след в форме винтовой спирали. Это противоречит классическим представлениям, но было подтверждено в эксперименте с переходным излучением. Открытие меняет существующие взгляды на природу закрученного света и имеет значительные перспективы как для фундаментальных исследований, так и для прикладных технологий.
Результаты нового исследования разошлись с распространенным представлением о том, что наличие собаки, кошки или другого домашнего компаньона безусловно положительно влияет на благополучие людей. В некоторых случаях возможен негативный эффект.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
За последние 30 лет размер трески, обитающей в Балтийском море, значительно уменьшился. Если раньше рыбаки вылавливали из воды особей размером с маленького ребенка, то теперь добытая рыба легко помещается в ладонях. Авторы нового исследования винят в этом человека, который заставил один из видов эволюционировать в «карликов».
Объект 3I/ATLAS, обнаруженный в начале июля примерно в 675 миллионах километров от Солнца, принадлежит к потенциально самому опасному для землян типу небесных тел. К счастью, этот конкретный объект хотя и имеет опасные размеры, но нашей планете никак не угрожает.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии