Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В МТУСИ разработали систему для автоматического создания персонализированных плейлистов
Предложенный специалистами МТУСИ алгоритм работы, основанный на прямом взаимодействии с обучаемой системой, способен удовлетворить большую часть потребностей среднестатистического слушателя в подборе музыки. Разрабатываемая система с базовой схемой алгоритма обладает большим потенциалом и гибкостью для масштабируемых рекомендательных систем и может применяться на различных вычислительных устройствах.
С увеличением объема информации в интернете пользователю сложно найти нужные данные, поэтому все больше набирают популярность системы рекомендаций товаров, видеозаписей, кинокартин и музыкальных файлов. Разработчики крупных компании тратят огромные деньги на разработку, доработку и настройку алгоритмов и иных сервисов по подбору предложений.
Нейросети эффективно применяются в разных областях, включая обработку изображений и анализ музыкальных предпочтений. Популярными становятся алгоритмы создания «умных плейлистов» с помощью искусственного интеллекта. Однако существующие сервисы не всегда могут удовлетворить все потребности пользователей, например, из-за ограничений доступа или неустойчивого интернет-соединения.
Над решением проблемы работают магистранты факультета РиТ Антон Шманев и Марина Михайлова под руководством доцента кафедры «Телевидение и звуковое вещание» МТУСИ Семена Литвина, которые разрабатывают рекомендательную систему для создания персонализированных плейлистов.
«Разрабатываемый алгоритм системы базируется на нейросети, использующей цепи Маркова, и адаптивно реагирует на изменения, вносимые пользователем в ходе прослушивания. В процессе принятия решения учитываются субъективные психоакустические критерии и психологический настрой слушателя. Анализ статистики помогает выявить общие тенденции, связанные с различными факторами, такими как возраст, пол, образование, профессия и место проживания слушателя. Частота переходов между композициями представляется вероятностью, по которой рекомендуются композиции и формируются плейлисты», — пояснил Антон Шманев.
Помимо рекомендаций по выбору композиций из списка, когда-то ранее уже прослушанных пользователем, алгоритм предлагает новые дополнительные треки из состава малопрослушиваемых до этого. Алгоритм использует построение «пути или цепи», где персептроны определяют, на что пользователь ориентируется в выборе музыки в данный момент, предлагая композиции в соответствии с оцененной вероятностью прослушивания.
Ключевым отличием разрабатываемой системы от имеющихся является оперирование с фонотекой аудиозаписей пользователя без постоянного выхода в интернет, что дает возможность слушателю использовать высококачественные и редкие аудиоматериалы своей фонотеки.
При разработке алгоритма учтены обновление правил генерации плейлистов в зависимости от отзывов пользователей и его прошлой активности, что позволяет улучшить процесс подбора фонограмм и предоставить персонализированный плейлист, соответствующий вкусам и предпочтениям пользователя.
Предложенный алгоритм работы, основанный на прямом взаимодействии с обучаемой системой, способен удовлетворить большую часть потребностей среднестатистического слушателя в подборе музыки. Разрабатываемая система с базовой схемой алгоритма обладает большим потенциалом и гибкостью для масштабируемых рекомендательных систем и может применяться на различных вычислительных устройствах.
В перспективе разрабатываемая система может быть расширена до работы с многоканальными аудиосигналами. Разработчики в дальнейшем планируют дополнить вектор типовых параметров фонограмм параметрами огибающей сигнала ADSR и параметром, характеризующим внутреннюю ритмическую структуры сигнала, что позволит более точно прогнозировать музыкальные предпочтения слушателя.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Ученые обнаружили, что общепринятые константы, с помощью которых химики предсказывают свойства молекул, содержали ошибки. Исправленные значения констант теперь объясняют ранее непонятные химические аномалии и позволяют предсказывать свойства новых материалов для квантовых технологий, датчиков и умных покрытий.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Во время недавних наблюдений карликовой планеты Квавар что-то неожиданно почти полностью закрыло ее собой. Астрономы уверены, что это не ее спутник Вейвот и не одно из двух известных колец этого маленького мира на краю Солнечной системы.
Самая большая планета в Солнечной системе, всегда поражавшая воображение своими колоссальными размерами, немного сдала позиции. Новые высокоточные измерения орбитального зонда NASA показали, что Юпитер не такой большой и круглый, как считали астрономы последние 40 лет.
Исследования самодержавия могут пролить свет на феномен, исконно свойственный российской государственности, а значит, переосмыслить исторический путь России и выработку новых направлений развития, к такому выводу пришел ученый ТюмГУ.
Третий известный межзвездный объект 3I/ATLAS летит примерно вдвое быстрее обоих своих предшественников. По расчетам, его вряд ли могло выбросить из родной планетной системы с подобной скоростью, и так разогнаться по пути он тоже не мог.
Все больше покупателей начинают отказываться от привычки делать покупки на маркетплейсах, а число новых продавцов на площадках практически не увеличилось. Аналитика показывает, что за первый квартал 2025 года — прирост селлеров составил всего 0,45% по сравнению с аналогичным периодом прошлого года. В то же время, маркетплейсы активно расширяют сеть пунктов выдачи, особенно в регионах, где физическое присутствие всех брендов невозможно. Ученые Пермского Политеха рассказали, почему люди стали реже совершать покупки на маркетплейсах.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии