Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
В МТУСИ разработали систему для автоматического создания персонализированных плейлистов
Предложенный специалистами МТУСИ алгоритм работы, основанный на прямом взаимодействии с обучаемой системой, способен удовлетворить большую часть потребностей среднестатистического слушателя в подборе музыки. Разрабатываемая система с базовой схемой алгоритма обладает большим потенциалом и гибкостью для масштабируемых рекомендательных систем и может применяться на различных вычислительных устройствах.
С увеличением объема информации в интернете пользователю сложно найти нужные данные, поэтому все больше набирают популярность системы рекомендаций товаров, видеозаписей, кинокартин и музыкальных файлов. Разработчики крупных компании тратят огромные деньги на разработку, доработку и настройку алгоритмов и иных сервисов по подбору предложений.
Нейросети эффективно применяются в разных областях, включая обработку изображений и анализ музыкальных предпочтений. Популярными становятся алгоритмы создания «умных плейлистов» с помощью искусственного интеллекта. Однако существующие сервисы не всегда могут удовлетворить все потребности пользователей, например, из-за ограничений доступа или неустойчивого интернет-соединения.
Над решением проблемы работают магистранты факультета РиТ Антон Шманев и Марина Михайлова под руководством доцента кафедры «Телевидение и звуковое вещание» МТУСИ Семена Литвина, которые разрабатывают рекомендательную систему для создания персонализированных плейлистов.
«Разрабатываемый алгоритм системы базируется на нейросети, использующей цепи Маркова, и адаптивно реагирует на изменения, вносимые пользователем в ходе прослушивания. В процессе принятия решения учитываются субъективные психоакустические критерии и психологический настрой слушателя. Анализ статистики помогает выявить общие тенденции, связанные с различными факторами, такими как возраст, пол, образование, профессия и место проживания слушателя. Частота переходов между композициями представляется вероятностью, по которой рекомендуются композиции и формируются плейлисты», — пояснил Антон Шманев.
Помимо рекомендаций по выбору композиций из списка, когда-то ранее уже прослушанных пользователем, алгоритм предлагает новые дополнительные треки из состава малопрослушиваемых до этого. Алгоритм использует построение «пути или цепи», где персептроны определяют, на что пользователь ориентируется в выборе музыки в данный момент, предлагая композиции в соответствии с оцененной вероятностью прослушивания.
Ключевым отличием разрабатываемой системы от имеющихся является оперирование с фонотекой аудиозаписей пользователя без постоянного выхода в интернет, что дает возможность слушателю использовать высококачественные и редкие аудиоматериалы своей фонотеки.
При разработке алгоритма учтены обновление правил генерации плейлистов в зависимости от отзывов пользователей и его прошлой активности, что позволяет улучшить процесс подбора фонограмм и предоставить персонализированный плейлист, соответствующий вкусам и предпочтениям пользователя.
Предложенный алгоритм работы, основанный на прямом взаимодействии с обучаемой системой, способен удовлетворить большую часть потребностей среднестатистического слушателя в подборе музыки. Разрабатываемая система с базовой схемой алгоритма обладает большим потенциалом и гибкостью для масштабируемых рекомендательных систем и может применяться на различных вычислительных устройствах.
В перспективе разрабатываемая система может быть расширена до работы с многоканальными аудиосигналами. Разработчики в дальнейшем планируют дополнить вектор типовых параметров фонограмм параметрами огибающей сигнала ADSR и параметром, характеризующим внутреннюю ритмическую структуры сигнала, что позволит более точно прогнозировать музыкальные предпочтения слушателя.
Международная команда ученых оценила связь между длительностью физической активности, ее интенсивностью, риском смерти от всех причин и вероятностью развития сердечно-сосудистых и онкологических заболеваний.
Исследователи разобрались с тем, что происходит в организме пластикоядных гусениц при поедании и переваривании самого распространенного пластика. Оказалось, что для их здоровья это не проходит бесследно, но, похоже, есть способ помочь и гусеницам, и осуществляемому ими процессу разрушения искусственных полимеров.
Кража лошадей была серьезной проблемой для крестьянских хозяйств в Российской империи. Особенности этого явления, включающие жестокие уголовные наказания, крестьянский самосуд и межэтнические конфликты, выявили в ходе исследования юридических источников историки из МФТИ и РЭУ имени Г.В. Плеханова.
Принято считать, что люди с развитыми когнитивными способностями отличаются высокими моральными принципами. Ученые из Великобритании решили проверить этот тезис научными методами и пришли к противоположному выводу.
Подобрать тип физической активности, который лучше всего подходит человеку, можно исходя из особенностей его характера. Психологи из Великобритании определили, что люди с разными чертами личности получают больше удовольствия от разных видов спорта.
В июне 2025 года ВК покинули 1,2 миллиона авторов контента. Это резкое ускорение их бегства в сравнении с предшествующими месяцами. Одновременно число авторов на других платформах растет, в результате по этому показателю соцсеть обогнал не только Telegram, но и запрещенный Instagram*. Причиной происходящего многие наблюдатели посчитали совокупность решений менеджмента компании за последние годы.
Радиотелескопы уловили очень короткий сигнал, и по его характеристикам стало ясно, что он не может быть естественного происхождения. Астрономы пришли к выводу, что источник находился в околоземном пространстве — там, где уже более полувека летает «мертвый» аппарат NASA.
Группа российских ученых из Института прикладной математики имени М. В. Келдыша РАН и МФТИ провела детальное численное исследование источников шума, генерируемых крылом прототипа сверхзвукового бизнес-джета в режиме посадки. Эта работа, сочетающая передовые методы вычислительной гидродинамики и аэроакустики, впервые позволила с высокой точностью локализовать и охарактеризовать основные зоны шумообразования вблизи полноразмерной геометрии крыла модели прототипа сверхзвукового пассажирского самолета в посадочной конфигурации.
Результаты эксперимента в США в будущем могут позволить добиться разрешения на использование отработанной конопли в качестве кормовой добавки в животноводстве.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
ПонятноИз-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
ПонятноНаши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
ПонятноМы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
Комментарии