• Добавить в закладки
  • Facebook
  • Twitter
  • Telegram
  • VK
  • Печать
  • Email
  • Скопировать ссылку
15 апреля
ПНИПУ
4 659

Создан удобный инструмент для прогнозирования поломок оборудования

4.4

В крупных компаниях для того, чтобы обслуживать оборудование, инженерам и аналитикам часто приходится разбираться в огромном количестве данных. Например, чтобы избежать поломок и вовремя ремонтировать оборудование, нужно понять, что сильнее влияет на появление дефектов: температура, вибрация или износ? Для этого специалисты занимаются анализом данных с применением технологий машинного обучения, однако это сложные области, которые требуют глубоких знаний программирования и математики. Ученые из Пермского Политеха создали программу в виде электронной книги, которая помогает легко разобраться в основах классификации данных. Она уже успешно применяется в обучении студентов высшей школы авиационного двигателестроения.

Создан удобный инструмент для прогнозирования поломок оборудования – иллюстрация к материалу на Naked Science
Ученые из Пермского Политеха создали программу, которая помогает легко разобраться в основах классификации данных / © homa appliances, unsplash

На программу выдано свидетельство. Разработка выполнена в рамках программы стратегического академического лидерства «Приоритет 2030» и внедрена в ПИШ ВШАД ПНИПУ. Программа выиграла конкурс в рамках мероприятия по поиску и защите способных к правовой охране решений, отвечающих требованиям, установленным к программам для ЭВМ, в аэрокосмической отрасли.

В техническом обслуживании оборудования, инженерии и аналитике специалистам часто приходится работать с большими массивами информации. Это позволяет предсказать, когда конкретное оборудование выйдет из строя, и провести профилактическое обслуживание, снизить простои и увеличить эффективность производства. На современных производствах данные ежесекундно собираются с тысяч датчиков на трубопроводах, реакторах, турбинах и насосах. В крупных предприятиях их объем может достигать от одного до 100 ТБ в месяц (для сравнения, это примерно 1 000 часов видео или 310 000 фотографий). В таком массиве разнородной информации сложно определить, какие параметры (температура, вибрация, износ) более критичны для поломки оборудования, а какие – менее, и что нужно ремонтировать в первую очередь.

При работе с такими объемами информации аналитики данных используют специальные программы и подходы. Однако в настоящее время они очень сложны и требуют от пользователя высокого уровня знаний и умений в области программирования и математики.

Для упрощения оперирования большими данными и обучения этому ученые Пермского Политеха разработали программу, которая позволяет студентам и специалистам без опыта в программировании освоить основы классификации данных и анализа значимости признаков.

Программа разработана на языке программирования Visual Basic for Applications и представляет собой электронную книгу. Это позволяет ее запускать в любых стандартных офисных пакетах, таких как Excel, Numbers, P7, Polaris Office, Open Office, LibreOffice и др., что делает ее простой в использовании и доступной для широкого круга. Она использует метод, который разделяет объекты на два класса на основе их признаков – это называется дихотомической классификацией.

Предположим, что у нас есть множество приборов – например, датчики на заводе, которые могут работать в двух режимах: нормальный и аварийный (когда что-то сломалось). Нам нужно понять, в результате воздействия каких факторов датчики выходят из строя. Для этого в программе пользователь в одну таблицу вносит параметры приборов в нормальном режиме (например, температура = 25°C, давление = одна атмосфера), в другую — в аварийном (например, температура = 100°C, давление = пять атмосфер). Далее это анализирует программа: смотрит, какие значения чаще встречаются в аварийных случаях, а какие — в нормальных. Например, если при температуре выше 90°C почти всегда случается авария, программа это запомнит. Так она определяет важность параметров и выясняет, какие показатели лучше всего помогают отличить аварию от нормы (например, температура важнее, чем влажность).

– Перед полноценной работой программу нужно обучить на основе уже известной информации. Для этого пользователю необходимо самостоятельно разбить данные, которые он вносит, на категории – «предельный» или «допустимый» износ. Программа построит модель, которая будет учитывать взаимосвязи между признаками и классами. Впоследствии пользователь сможет вводить новые данные, и ПО уже автоматически будет определять, к какому классу они относятся – корректно будет работать этот датчик или нет. Благодаря этому можно предсказывать, как поведет себя оборудование при тех или иных условиях, прогнозировать возможные аварии и предотвращать их, – рассказывает Юлия Большакова, учебный мастер деканата факультета прикладной математики и механики ПНИПУ.

Такая программа будет полезна специалистам в области технического обслуживания и ремонта, инженерам и аналитикам данных, а также студентам и преподавателям технических и экономических специальностей. Молодыми специалистами она может использоваться для диагностики состояния оборудования (станки, датчики), прогнозирования отказов и необходимости выполнения ремонтных работ, студентам поможет лучше понять основы статистического анализа и классификации данных, а для преподавателей вузов станет отличным наглядным инструментом демонстрации того, как работают методы машинного обучения. Программа показывает принципы классификации на реальных примерах, можно менять параметры и сразу видеть результат.

Разработка ученых Пермского Политеха не только демонстрирует принципы машинного обучения, но и открывает новые возможности для образования и профессиональной деятельности. Она уже успешно используется в учебной программе студентов Передовой инженерной школы «Высшая школа авиационного двигателестроения». Отметим, что на практическое занятие с данной программой у студентов отведено всего два академических часа – этого достаточно, чтобы объяснить, как работают базовые методы машинного обучения. Обычно для того, чтобы познакомить студентов с основами статистического анализа и классификации данных, требуется не менее одной лекции и двух практик, то есть шесть академических часов. Используя данную программу, удалось включить эту тему в дисциплину.

Эту программу в силу ее простоты можно использовать не только для обучения магистров Передовой инженерной школы, но и для повышения цифровой грамотности студентов любых специальностей, поэтому ее можно тиражировать в рамках проекта «Цифровая кафедра».

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Пермский национальный исследовательский политехнический университет (национальный исследовательский, прошлые названия: Пермский политехнический институт, Пермский государственный технический университет) — технический ВУЗ Российской Федерации. Основан в 1960 году как Пермский политехнический институт (ППИ), в результате объединения Пермского горного института (организованного в 1953 году) с Вечерним машиностроительным институтом. В 1992 году ППИ в числе первых политехнических вузов России получил статус технического университета.
Подписывайтесь на нас в Telegram, Яндекс.Новостях и VK
Предстоящие мероприятия
Вчера, 11:04
НИУ ВШЭ

Команда российских исследователей, включая ученых из НИУ ВШЭ, применили искусственный интеллект для анализа подписок 4,5 тысячи студентов на VK-сообщества. Оказалось, что алгоритмы могут с высокой точностью предсказывать, кто отличник, а у кого трудности с учебой.

4 часа назад
Александр Березин

В длительном выступлении 30 мая 2025 года Илон Маск не ограничился повторением уже известного, но и обозначил ряд новых моментов по программе Starship и конкретике первых нескольких волн полетов на Марс.

27 мая
Любовь Соковикова

Хотя попытки объединить квантовую теорию и гравитацию десятилетиями терпели неудачу, ученые продолжают выдвигать новые, порой крайне спорные гипотезы. Авторы нового исследования, например, предложили посмотреть на гравитацию так же, как на другие фундаментальные силы природы — через симметрии и поля.

26 мая
Unitsky String Technologies Inc.

Казахстанский Алматы — город контрастов, где горы соседствуют с урбанистическими пейзажами, а бизнес-центры — с историческими кварталами. Неизменным остается одно — пробки. Ежедневно сюда приезжает более 700 тысяч автомобилей из пригородов, при этом в самом мегаполисе зарегистрировано порядка 600 тысяч транспортных средств. В результате по улицам ежедневно движется более миллиона транспортных средств.

27 мая
НИУ ВШЭ

Исследователи ВШЭ выделили более 4000 примеров устной русской речи билингвов из семи регионов России и выяснили: большинство нестандартных форм в конструкциях с числительными связано не только с их родным языком, но и с тем, как часто выражение встречается в повседневной речи. Например, фразы «два часа» или «пять километров» почти всегда совпадают с литературным вариантом, а вот менее привычные выражения, особенно с числительными от двух до четырех, а также с собирательными формами вроде «двое» или «трое», часто звучат иначе.

27 мая
Любовь Соковикова

Хотя попытки объединить квантовую теорию и гравитацию десятилетиями терпели неудачу, ученые продолжают выдвигать новые, порой крайне спорные гипотезы. Авторы нового исследования, например, предложили посмотреть на гравитацию так же, как на другие фундаментальные силы природы — через симметрии и поля.

6 мая
Редакция Naked Science

Да, с волосами и люком все так. У космонавта Суниты Уильямс волосы на МКС плавали свободно, а у Кэти Пэрри и прочих в полете 14 апреля 2025 года — нет. Но это не значит, что суборбитального космического полета первого чисто женского экипажа не было или что он был инсценировкой. Причем, в общем-то, чтобы понять это, даже не нужно обладать специальными знаниями.

22 мая
ПНИПУ

Недавно вышел второй сезон сериала «Одни из нас» (TheLastofUs), созданного по сюжету популярнейшей видеоигры. Ученые Пермского Политеха решили разобраться, насколько реален сценарий грибной пандемии, превращающей людей зомби? Чем живет кордицепс и как он «ищет» своих жертв, действительно ли паразит способен эволюционировать настолько, чтобы поражать человеческий организм и подчинять себе его волю, был бы у людей шанс выжить, какие грибы уже поселились в наших телах и выручит ли нас иммунитет, сформированный тысячелетиями.

6 мая
Александр Березин

Мощнейшее отключение электроэнергии за последние 20 лет истории Европы случилось уже неделю назад, а испанские власти пока так и не объявили о его причинах. Это логично: как мы покажем ниже, ответ на вопрос, кто виноват, получится очень неполиткорректным. И, более того, противоречащим линии правящей в Испании партии. Но мы живем за тысячи километров от нее, поэтому можем себе позволить аполитичный анализ случившегося. Так что же произошло на самом деле и каковы наши шансы увидеть подобное у себя дома?

[miniorange_social_login]

Комментарии

Написать комментарий
Подтвердить?
Подтвердить?
Причина отклонения
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Жалоба отправлена

Мы обязательно проверим комментарий и
при необходимости примем меры.

Спасибо
Аккаунт заблокирован!

Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.

Понятно
Что-то пошло не так!

Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.

Понятно
Лучшие материалы
Закрыть
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно