Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Электроды в мозге поймали едва уловимый сигнал внутреннего голоса
Ученые из Сколтеха, Федерального центра нейрохирургии Минздрава России, Сеченовского университета и МГУ имени М. В. Ломоносова исследовали мозговую активность при письме и говорении у двух пациентов с имплантированными внутричерепными электродами. Исследование ученых расширяет базу знаний, необходимую для создания «читающих мысли» нейроинтерфейсов, которые смогут распознавать мысли и намерения пользователя, не зная наперед, хочет ли он пошевелить протезом, набрать текст или выполнить иную задачу.
Работа опубликована в библиотеке препринтов medRxiv. «Нейроученые постепенно переходят от концепции, что есть область мозга, которая отвечает за ту или иную функцию, к концепции, что за функцию отвечает некоторая сеть динамически взаимодействующих областей.
И в решении моторных задач, например, участвует множество областей, что подтверждается и нашими результатами, — рассказывает Николай Сыров, один из авторов исследования, старший научный сотрудник Центра нейробиологии и нейрореабилитации имени Владимира Зельмана в Сколтехе. — Возникает интересный вопрос: если функции не локализованы в одном месте, а распределены по коре, можем ли мы зарегистрировать электрическую активность мозга и понять, что он пытается сделать, не зная заранее, какого рода намерение мы ищем?»
Этот вопрос лежит в основе концепции мультимодальных нейроинтерфейсов — так называются мозговые чипы, которые, в отличие от большинства существующих решений, не ориентированы на одну конкретную функцию. Вместо того, чтобы искать только сигналы, которые кодируют намерение пошевелить протезом, или только связанные с речью сигналы, мультимодальный интерфейс будет сам определять по электрической активности, к какой категории она относится. Ученые из Сколтеха считают, что за этим подходом — будущее интерфейсов «мозг — компьютер», однако для его реализации потребуется еще множество подобных исследований, которые прояснят тонкости распределения функций по областям мозга.
В нынешнем исследовании участвовали два пациента с эпилепсией. Обоим по медицинским показаниям имплантировали электроды в мозг в Федеральном центре нейрохирургии Минздрава РФ в Тюмени. Таким образом врачи ищут очаг эпилептической активности. То есть расположение электродов не мотивировано ожиданиями ученых касательно возможной локализации в мозге активности, связанной с письмом и речевыми задачами, которые были предложены пациентам.
В первом задании пациенты писали цифры на планшете. Во втором они сперва произносили слова вслух, потом беззвучно артикулировали их (шевелили губами и прочее) и наконец лишь воображали произнесение слов, без какого бы то ни было движения языка, губ и так далее. Все это время с электродов велась непрерывная запись мозговой активности.
Ученые обнаружили, что задача по письму, которая, по сути своей, является двигательной, вызывала не локализованную активность: сигнал принимают все электроды, независимо от их положения. Такая картина соответствует ожиданиям ученых, что координированное движение сопряжено с распределенной по коре головного мозга активностью.
В некоторых участках мозга активность наблюдалась при реализации обеих функций: говорения и письма. С точки зрения перспективы реализации мультимодальных интерфейсов это — хороший знак.
Что касается речевой задачи, электрическая активность при полноценном говорении и при немой артикуляции хорошо соответствовали друг другу. А сигнал «внутреннего голоса», пусть он и оказался существенно слабее, все же отлично вписывался в ту же картину. Это логично, ведь эту едва уловимую активность можно рассматривать как сигнал речи за вычетом движения органов артикуляции и слуха. Такой «остаточный» сигнал может быть связан, например, с извлечением слов из памяти. «Любая попытка зарегистрировать сигнал внутреннего голоса сама по себе интересна тем, что вы в каком-то смысле читаете мысли. Не так много научных групп, которые этим занимаются», — поделился первый автор статьи, младший научный сотрудник Центра нейробиологии и нейрореабилитации имени Владимира Зельмана Гурген Согоян.
Важное нововведение работы научной группы из Сколтеха — это запись мозговой активности у одних и тех же пациентов при решении как речевой, так и моторной задачи. Обычно две эти функции рассматривают отдельно, хотя говорению присущ двигательный аспект: органы речи движутся. Регистрация сигнала у одного индивида, выполняющего разные задачи, со временем позволит определить области пересечения соответствующих функций в нервной системе. Это знание необходимо для создания мультифункциональных нейроинтерфейсов, которые смогут декодировать разные функции, включая намерения чем-то пошевелить и что-то сказать.
Ученые из Института космических исследований РАН и МФТИ раскрыли химический механизм, объясняющий появление молекул воды на поверхностях астероидов.
Пластичность мозга — его способность перестраиваться под влиянием приходящей информации. Это свойство необходимо для обучения и адаптации. Пластичность особенно высока в детском и юношеском возрасте, она помогает быстро выучить иностранный язык и освоить сложные моторные навыки (например, фигурное катание). Ресурс пластичности есть и у пожилых людей — благодаря альтернативным нейронным сетям они восстанавливаются после травмы или инсульта. Как выясняется, высокая пластичность это не всегда хорошо. Нарушение тонкого баланса между пластичностью и стабильностью может вести к неприятным последствиям, таким как хроническая боль, тиннитус (звон в ушах) и фобии.
Исследователи Санкт-Петербургского государственного университета разработали эффективный способ обнаружения в крови важнейшего биомаркера иммунитета — неоптерина — с помощью нанотехнологий и лазера.
Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.
На наземные растения, в основном деревья, приходится 80 процентов всей биомассы Земли, 450 миллиардов тонн сухого углерода и более двух триллионов тонн «живого веса». Поэтому идея сажать новые леса для связывания СО2 из атмосферы долго казалась логичной. Новые данные показали, что реальность заметно сложнее.
«Любить лишь можно только раз», — писал поэт Сергей Есенин, а герои культовых сериалов приходили к выводу, что «настоящая» влюбленность случается в жизни максимум дважды. Однако ни один из этих тезисов не подкреплен научными данными. Американские исследователи подошли к вопросу иначе: опросили более 10 тысяч человек и вывели среднее число сильных влюбленностей, возможных в течение жизни.
Астрономы недавно проанализировали базу данных о падающих на Землю объектах и пришли к выводу, что два из них прибыли из межзвездного пространства. Известна не только дата, но и место падения каждого из них.
Международная команда палеонтологов описала новый вид динозавра размером с крупную современную птицу. Он носил на голове плотный костяной нарост, который эти животные, возможно, использовали для внутривидовых разборок. Находка показывает, что даже мелкие хищники мелового периода могли решать конфликты не только когтями и зубами, но и ударами головой.
Образцы грунта, взятые астронавтами полвека назад, вложили еще один важный кирпич в здание научной картины мира: гипотеза о том, что Земля исходно была сухой, не стыкуется с фактами. Похоже, идею о невозможности сохранения большого количества воды на «теплых» планетах придется пересмотреть.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно