Уведомления
Авторизуйтесь или зарегистрируйтесь, чтобы оценивать материалы, создавать записи и писать комментарии.
Авторизуясь, вы соглашаетесь с правилами пользования сайтом и даете согласие на обработку персональных данных.
Предложена «сладкая» подзарядка для нейроинтерфейсов
Ученые МФТИ и НИЦ «Курчатовский институт» разработали высокоэффективный биотопливный источник питания на основе глюкозы и многостенных углеродных нанотрубок для непрерывной работы нейроимплантов. Устройство продемонстрировало хорошие результаты работы на мозге крыс.
Исследование опубликовано в журнале IEEE. За последние десятилетия значительно продвинулись разработки в области активных имплантируемых медицинских устройств. Это открывает широкие перспективы для восстановления функций поврежденных органов, в том числе сердца и мозга. Однако основным недостатком традиционных устройств по-прежнему остается использование литий-ионных аккумуляторов в качестве источника питания. Эти батареи громоздки, состоят из токсичных материалов и требуют периодической замены путем хирургических вмешательств.
Ферментный биотопливный элемент (ФБТЭ) обещает стать технологическим прорывом в области энергоснабжения медицинских устройств. Сам элемент представляет собой электрогенератор, который постоянно вырабатывает энергию за счет ресурсов организма пациента. Усовершенствованные долгоживущие нейроинтерфейсы будут востребованы в области лечения нейродегенеративных и неврологических заболеваний, таких как болезнь Альцгеймера, болезнь Паркинсона и последствия эпилепсии.
В своей повседневной деятельности организм человека производит несколько видов энергии: механическую (дыхание и сердцебиение, мышечное сокращение, артериальное давление), тепловую и биохимическую. Этим полезным свойством и пытаются воспользоваться ученые. Например, уже существуют устройства, работа которых основана на фотоэмиссионном эффекте (выработка электронов под действием света) или термоэлектрическом (преобразование разности температур в электрическое напряжение). Однако само преобразование такой энергии в организме человека до сих пор не является стабильным процессом.
В свою очередь ферментатный биотопливный элемент можно рассматривать как устройство, которое способно добиться стабильного преобразования химической энергии органических веществ в электричество путем окисления сахаров (глюкозы) из физиологических жидкостей.
Глюкоза широко распространена в организме и играет жизненно важную роль в качестве основного источника энергии. Ее концентрация поддерживается благодаря естественной саморегуляции — гомеостазу. Потребление глюкозы биотопливным элементом минимально и, следовательно, не влияет на гомеостаз. Эти свойства дают возможность для создания устройств пожизненной имплантации.
«Новаторство нашей работы в том, что мы разработали способ, при котором стало возможным обеспечить производство электричества внутри организма за счёт окисления органических веществ, а именно глюкозы. Это позволит устанавливать нейроимпланты с естественным генератором энергии вместо традиционных литий-ионных аккумуляторов, которые склонны разряжаться и требуют замены каждые 5–10 лет. Биотопливный элемент подходит и для кардиостимулятора, и нейростимулятора, имплантов для восстановления слуха. У него максимально широкое применение. Кроме того, в нашем исследовании был предложен способ, при котором можно питать нейроимпланты благодаря глюкозе, которая находится в ликворе — спинномозговой жидкости. Пока мы провели серию успешных испытаний на крысах, что открывает возможность для будущих испытаний на более крупных млекопитающих», — рассказала о работе Екатерина Вахницкая, магистрантка МФТИ.
Биотопливный элемент весьма компактен и состоит из двух микроэлектродов. На аноде фермент расщепляет глюкозу с образованием протонов и электронов. На катоде происходит реакция восстановления кислорода при участии протонов, проходящих через электролит, и электронов, которые протекают через внешнюю электрическую цепь.
Первоочередная задача ученых — добиться высокой эффективности электродов, которые влияют на эффективность происходящей окислительно-восстановительной реакции. Для ее решения были использованы новые композитные материалы, в том числе многостенные углеродные нанотрубки, которые создаются из свернутых слоев атомов углерода в виде полых цилиндрических структур.
Екатерина отметила, что композитный материал, который состоит из последовательно нанесенных компонентов, позволяет добиться заданных свойств для анода. Например, углеродные нанотрубки обеспечивают увеличение площади поверхности и электропроводимости. За счет их применения можно адсорбировать и иммобилизовать больше фермента, а значит, получить более мощное устройство.
«Для бесперебойной работы нейроимплантов мы создали композитный анод. Самая большая проблема, препятствующая выработке энергии в организме, — это иммобилизация фермента. Композитный анод способен предотвратить диффузию фермента в окружающую жидкость: в кровь и ликвор. По сути, он удерживает их на аноде благодаря различным компонентам — полимерам, углеродным материалам. Для подтверждения нашей гипотезы мы провели серию измерений, которые показали, что мощность элемента не меняется, а значит, фермент остается иммобилизован на аноде», — подчеркнула Екатерина Вахницкая.
Разработчики отмечают, что для изготовления мощного биотопливного элемента важно учитывать такие значения, как выходное напряжение и удельную мощность, которые являются наиболее важными характеристиками источника питания.
В ходе экспериментальной работы на мозге крыс электроды были успешно имплантированы и проведены электрохимические измерения. Биотопливный элемент обеспечивал максимальную удельную мощность 51,8 мВт/см2 и максимальный потенциал открытой цепи 200 мВ. Эти результаты демонстрируют потенциальные возможности имплантации устройства в качестве долговременного источника питания для нейростимуляторов, а применение электропроводящих углеродных наноматериалов —одним из наиболее перспективных подходов для их производства.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
Вокруг звезды HD 131488, расположенной в созвездии Центавра (Centaurus) на расстоянии около 152 световых лет от Земли, впервые зафиксировали следы монооксида углерода (CO), который образуется при столкновениях и испарении комет. Находка открывает новую страницу в изучении формирования планетных систем.
Палеонтологи описали крупнейшее в мире скопление следов динозавров: более 16 000 вмятин на площади 7500 квадратных метров. Ученые считают, что эта территория была не просто местом случайных прогулок, а оживленной трассой, где динозавры организованно мигрировали вдоль берега древнего озера.
Биологи опровергли представление о примитивности органов чувств у древнейших бесчелюстных, обнаружив у миксин огромный арсенал рецепторов для поиска добычи. Исследователи доказали, что способность различать сложные запахи и аминокислоты появилась у общего предка позвоночных задолго до возникновения челюстей.
После открытия объекта 3I/ATLAS предполагалось, что ядро межзвездной кометы могло иметь гигантские размеры. Но в процессе дальнейших наблюдений выяснилось, что эти оценки были явно завышены. Недавние расчеты показали, что на самом деле 3I/ATLAS по размерам соответствует среднестатистическим или даже самым компактным кометам Солнечной системы.
В 16.18 по московскому времени 28 декабря 2025 года с единственного гражданского космодрома на территории России произошел 17-й по счету космический запуск этого года. Перед ним на космодроме побывал корреспондент нашего издания, и вскоре мы выпустим репортаж о том, чем живет самый холодный космодром в мире.
С 2010-х в «Роскосмосе» говорили: будущая РОС сможет пролетать над полюсом, что даст ей возможности для новых научных экспериментов. Но вскоре после того, как в ноябре 2025 года Россия временно лишилась возможности запускать людей в космос, эта позиция изменилась. В результате запускать космонавтов с космодромов нашей страны станет довольно сложно.
На скалистых берегах аргентинской Патагонии разворачивается настоящая драма. Магеллановы пингвины, долгое время чувствовавшие себя в безопасности на суше в своих многотысячных колониях, столкнулись с новым и беспощадным врагом. Их извечные морские страхи — касатки и морские леопарды — теперь блекнут перед угрозой, пришедшей из глубины материка. Виновник переполоха — грациозный и мощный хищник, недавно вернувшийся на эти земли после долгого изгнания.
Среди самых интригующих открытий космического телескопа «Джеймс Уэбб» — компактные объекты, получившие название «маленькие красные точки». Их видели только в самых дальних уголках Вселенной. Большинство возникло в первый миллиард лет после Большого взрыва, и ученые предполагали, что такие источники представляют собой небольшие компактные галактики. Однако международная команда астрономов пришла к иному выводу. Они предположили, что на самом деле «маленькие красные точки» — черные дыры, окруженные массивной газовой оболочкой.
Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.
Понятно
Из-за нарушений правил сайта на ваш аккаунт были наложены ограничения. Если это ошибка, напишите нам.
Понятно
Наши фильтры обнаружили в ваших действиях признаки накрутки. Отдохните немного и вернитесь к нам позже.
Понятно
Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.
Понятно
