01.12.2020
Сергей Васильев
1

Искусственный интеллект решил проблему фолдинга белков

6.9

Нейросеть AlphaFold впервые в истории смогла точно предсказать пространственную форму сложных белков по их аминокислотной последовательности.

©Argonne National Laboratory

Искусственный интеллект решил задачу, которая уже около полувека остается одной из самых актуальных для биологии: предсказание третичной структуры белков по первичной. Теперь, зная аминокислотную последовательность крупной белковой молекулы, можно будет рассчитать ее трехмерную пространственную конфигурацию. О достижении сообщается в пресс-релизе, распространенном британским стартапом DeepMind.

Дело в том, что свойства и функции белков определяются их трехмерной структурой, и многие важные находки о том, как именно они работают, сделали на основе именно таких структур. Десятилетиями для этого применяют такие методы, как рентгеновская кристаллография, ядерный магнитный резонанс или криоэлектронная микроскопия — длительные, сложные и трудоемкие. Однако даже они не всегда справляются; в результате сегодня установлены 3D-структуры примерно 170 тысяч белков из около 200 миллионов, известных науке.

Между тем в природе третичная структура белков определяется первичной — последовательностью аминокислот, которые образуют цепочки этих молекул: они складываются естественным образом, сами по себе. Этот процесс называют «укладкой», фолдингом белка. Неудивительно, что долгие годы ученые стремились к тому, чтобы моделировать его математически. Задача оказалась настолько сложна, что даже применение суперкомпьютеров здесь не слишком помогло: число вариантов, которые требуется рассчитать для молекул, состоящих из сотен аминокислот, получается астрономическим.

©DeepMind

Чтобы стимулировать работы в этом направлении, с 1994-го каждые два года проводят испытания CASP (Critical Assessment of protein Structure Prediction — «Критическая оценка предсказания структуры белков»). Создатели подобных проектов и алгоритмов со всего мира получают аминокислотные последовательности примерно сотни белков, структуры которых еще неизвестны, и пытаются вычислить их с помощью своих моделей. Параллельно в лабораториях работают ученые, действующие «классическими» методами структурной биологии. Затем полученные структуры сравнивают, вычисляя величину совпадения — GDT.

Значения GDT от 90 до 100 считают точным предсказанием структуры, и для коротких пептидов, состоящих из нескольких десятков аминокислот этого удалось добиться еще в 1990-х. Однако для белков, включающих сотни аминокислот, GDT долгие годы держались на «позорном» уровне — около 20. Лишь несколько лет назад, используя сложнейшие алгоритмы, эту цифру удалось довести до 40, чего по-прежнему недостаточно.

Средние результаты GDT на конкурсах прошлых лет и 2020-го; красная линия — результаты AlphaFold. Значения на оси абсцисс соответствуют сложности моделируемых белков / ©Chris Bickel, Science

С 2018 года в конкурсе CASP участвует и проект AlphaFold, который разрабатывает британская компания DeepMind — та самая, в которой ранее создали ИИ, побеждающий профессионалов игры го. Уже тогда AlphaFold оказался лидером рейтинга, продемонстрировав GDT на уровне до 60 даже для сложнейших структур. К конкурсу 2020 года ИИ усовершенствовали и обучили на 170 тысячах известных белковых структур. На испытаниях он оказался способен предсказывать фолдинг со средним GDT более 92 и свыше 87 — для наиболее сложных молекул.

Специалисты уже называют это событие одним из важнейших прорывов последних лет. Возможно, вскоре нейросети позволят рассчитывать трехмерные структуры белков «на лету», по мере необходимости. Задача, которая прежде была настолько сложна, что авторы некоторых таких работ удостаивались Нобелевской премии, станет рутиной.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.
Вчера, 14:13
Алиса Гаджиева

Мужчину и женщину похоронили 2500 лет назад и снабдили средством для разговора с Осирисом, необходимыми внутренними органами и большим числом слуг.

3 часа назад
Ольга Иванова

Ученые разработали анкету, которая поможет определить степень психопатии у домашних кошек. Тест можно пройти онлайн.

Вчера, 15:32
Ольга Иванова

Это касается не только жизни на Земле, но и, как предполагают исследователи из Франции и Великобритании, на других планетах.

3 декабря
Сергей Васильев

Биологи обнаружили, что обширные скопления пластика позволяют прибрежным животным осваивать открытое море, прежде для них недоступное, и распространяться по всем уголкам океана.

5 декабря
Василий Парфенов

Вопрос активности венерианских вулканов занимает планетологов давно. Если они до сих пор извергаются или делали это недавно по геологическим меркам, то недра второй планеты от Солнца по-прежнему активны. Однако получить достоверные данные подтверждающие или опровергающие активность вулканов на Венере до сих пор не получалось. Зато недавно ученые получили еще одно пусть и косвенное, но вполне надежное свидетельство «бурной жизни» геологических формирований на «сестре Земли».

3 декабря
Алиса Гаджиева

У погибшего почти 70 миллионов лет назад хищника была трудная жизнь: помимо обычного набора проблем, таких как схватки с сородичами, он страдал от зубной боли.

12 ноября
Мария Азарова

Кошки оказывались сбиты с толку, когда их человек, как им казалось, «телепортировался» в новое, неожиданное место. Однако они не реагировали таким же образом на чужих людей или других животных.

3 декабря
Сергей Васильев

Биологи обнаружили, что обширные скопления пластика позволяют прибрежным животным осваивать открытое море, прежде для них недоступное, и распространяться по всем уголкам океана.

25 ноября
НИУ ВШЭ

Мобильные ученые публикуются в индексируемых журналах в два раза чаще. К такому выводу пришли исследователи из НИУ ВШЭ.

[miniorange_social_login]

Комментарии

1 Комментарий

01.12.2020
-
0
+
Хоть какое-то полезное применение ИИ на нейросетях нашли
Подтвердить?
Подтвердить?
Не получилось опубликовать!

Вы попытались написать запрещенную фразу или вас забанили за частые нарушения.

Понятно
Лучшие материалы
Войти
Регистрируясь, вы соглашаетесь с правилами использования сайта и даете согласие на обработку персональных данных.
Ваша заявка получена

Мы скоро изучим заявку и свяжемся с Вами по указанной почте в случае положительного исхода. Спасибо за интерес к проекту.

Понятно
Ваше сообщение получено

Мы скоро прочитаем его и свяжемся с Вами по указанной почте. Спасибо за интерес к проекту.

Понятно

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: